Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
JMERC
0.4
Volume 15, Issue 2 (2023)                   Iran J War Public Health 2023, 15(2): 199-205 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)


History

How to cite this article
Shnaien A, Mohammad A, Hassan E. Neuroprotective Effects of Semaglutide in Endotoxemia Mouse Model. Iran J War Public Health 2023; 15 (2) :199-205
URL: http://ijwph.ir/article-1-1327-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
* Corresponding Author Address: Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Kufa Street, Najaf, Iraq. Postal Code: P. O. Box 21, Najaf, Iraq. (ekhlass.khazaal@uokufa.edu.iq)
Abstract   (880 Views)
Aims: The present study aimed to examine the neuroprotective effects of semaglutide during endotoxemia and its role in modulating pro-inflammatory mediators.
Materials & Methods: Twenty-four adult male Swiss albino mice, 8-12 weeks old, weighing 25-35g, were randomly divided into four equal groups (n=6), including sham (laparotomy without cecal ligation and puncture, sepsis (laparotomy with CLP), vehicle (equivalent volume of distilled water before CLP), and semaglutide (40µg/kg/day before CLP). The brain was used for tissue evaluation of TNF-α, IL-6, IL-1β, TLR4, and P-STAT3, as well as for histological examination.
Findings: The tissue levels of TNF-α, IL-6 and IL-in the sham group were significantly lower than the sepsis and vehicle groups (p<0.05). In the semaglutide group, tissue levels of TNF-α, IL-6, and IL-were significantly lower than the sepsis and vehicle groups (p<0.05). The tissue levels of TLR4 and STAT3 in the sham group were significantly lower than the sepsis and vehicle groups (p<0.05). Also, tissue levels of TLR4 and STAT3 in the semaglutide group were significantly lower than the sepsis and vehicle groups (p<0.05). Histopathologically, semaglutide considerably reduced brain damage compared to the sepsis and vehicle groups.
Conclusion: Semaglutide can reduce brain dysfunction during CLP-induced polymicrobial sepsis in male mice through its modulating effects on TLR4STAT3 downstream signaling pathways and subsequently reducing inflammatory cytokines TNF-α, IL-6, and IL-1β.
 
Keywords:

References
1. Jawad AS, Hassan ES, Mohammad AR. Protective effect of empagliflozin from acute renal injury during endotoxemia in mice model. Lat Am J Pharm. 2022;41(2):463-71. [Link]
2. Abd Uljaleel AQ, Hassan ES, Mohammad AR, Hadi NR. Protective effect of dulaglutide on lung injury in endotoxemia mouse model. Iran J War Public Health. 2023;15(1):35-42. [Link]
3. Wilcox ME, Daou M, Dionne JC, Dodek P, Englesakis M, Garland A, et al. Protocol for a scoping review of sepsis epidemiology. Syst Rev. 2022;11:125. [Link] [DOI:10.1186/s13643-022-02002-6]
4. Rudd KE, Kissoon N, Limmathurotsakul D, Bory S, Mutahunga B, Seymour CW, et al. The global burden of sepsis: Barriers and potential solutions. Crit Care. 2018;22(1):232. [Link] [DOI:10.1186/s13054-018-2157-z]
5. Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL. Sepsis and septic shock. Nat Rev Dis Primers. 2016;2:16045. [Link] [DOI:10.1038/nrdp.2016.45]
6. Czempik PF, Pluta MP, Krzych ŁJ. Sepsis-associated brain dysfunction: A review of current literature. Int J Environ Res Public Health. 2020;17(16):5852. [Link] [DOI:10.3390/ijerph17165852]
7. Annane D, Sharshar T. Cognitive decline after sepsis. Lancet Respir Med. 2015;3(1):61-9. [Link] [DOI:10.1016/S2213-2600(14)70246-2]
8. Sekino N, Selim M, Shehadah A. Sepsis-associated brain injury: Underlying mechanisms and potential therapeutic strategies for acute and long-term cognitive impairments. J Neuroinflammation. 2022;19:101. [Link] [DOI:10.1186/s12974-022-02464-4]
9. Abd Uljaleel A, Hassan E. Protective effect of ertugliflozin against acute lung injury caused by endotoxemia model in mice. Iran J War Public Health. 2023;15(1):67-75. [Link]
10. Hosoi T, Okuma Y, Kawagishi T, Qi X, Matsuda T, Nomura Y. Bacterial endotoxin induces STAT3 activation in the mouse brain. Brain Res. 2004;1023(1):48-53. [Link] [DOI:10.1016/j.brainres.2004.06.076]
11. Cho ML, Kang JW, Moon YM, Nam HJ, Jhun JY., Heo SB, et al. STAT3 and NF-κB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol. 2006;176(9):5652-61. [Link] [DOI:10.4049/jimmunol.176.9.5652]
12. Mohammad AR, Hadi AR, Hassan ES. Potential protective effect of ibrutinib from acute brain injury during endotoxemia in mice. Lat Am J Pharm. 2022;41(2):472-80. [Link]
13. Hassan ES, Jawad AS, Mohammad AR. Protective effect of liraglutide from acute renal injury during endotoxemia in mice mode. Lat Am J Pharm. 2022;41(2)428-36. [Link]
14. Hussein SN, Majeed SA, Ghafil FA, Hassan ES, Hadi NR. Toll-like receptors 4 antagonist, Ibudilast, ameliorates acute renal impairment induced by sepsis in an experimental model. Bulletin National Inst Health. 2022;140(7):2900-9. [Link]
15. Lee HJ, Shin JS, Lee KG, Park SC, Jang YP, Nam JH, et al. Ethanol extract of potentilla supina linne suppresses LPS‐induced inflammatory responses through NF‐κB and AP‐1 inactivation in macrophages and in endotoxic mice. Phytother Res. 2017;31(3):475-87. [Link] [DOI:10.1002/ptr.5773]
16. Anderberg SB, Luther T, Frithiof R. Physiological aspects of Toll‐like receptor 4 activation in sepsis‐induced acute kidney injury. Acta Physiol. 2017;219(3):575-90. [Link] [DOI:10.1111/apha.12798]
17. Ruiz S, Vardon Bounes F, Merlet Dupuy V, Conil JM, Buleon M, Fourcade O, et al. Sepsis modeling in mice: ligation length is a major severity factor in cecal ligation and puncture. Intensive Care Med Exp. 2016;4(1):22. [Link] [DOI:10.1186/s40635-016-0096-z]
18. Hamza RT, Majeed SA, Ghafil FA, Hassan ES, Hadi NR. Nephroprotective effect of melatonin in sepsis induces renal injury : CLP mice model. Lat Am J Pharm. 2022;41(3):589-96. [Link]
19. Catarina AV, Branchini G, Bettoni L, De Oliveira JR, Nunes FB. Sepsis-associated encephalopathy: from pathophysiology to progress in experimental studies. Mol Neurobiol. 2021. [Link] [DOI:10.1007/s12035-021-02303-2]
20. Lau J, Bloch P, Schäffer L, Pettersson I, Spetzler J, Kofoed J, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem. 2015;58(18):7370-80. [Link] [DOI:10.1021/acs.jmedchem.5b00726]
21. Sadek MA, Kandil EA, El Sayed NS, Sayed HM, Rabie MA. Semaglutide, a novel glucagon-like peptide-1 agonist, amends experimental autoimmune encephalomyelitis-induced multiple sclerosis in mice: Involvement of the PI3K/Akt/GSK-3β pathway. Int Immunopharmacol. 2023;115:109647. [Link] [DOI:10.1016/j.intimp.2022.109647]
22. Drosatos K, Khan RS, Trent CM, Jiang H, Son NH, Blaner WS, et al. Peroxisome proliferator- activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ Heart Fail. 2013;6(3):550-62. [Link] [DOI:10.1161/CIRCHEARTFAILURE.112.000177]
23. Wellington D, Mikaelian I, Singer L. Comparison of ketamine-xylazine and ketamine-dexmedetomidine anesthesia and intraperitoneal tolerance in rats. J Am Assoc Lab Anim Sci. 2013;52(4):481-7. [Link]
24. Yousif NG, Hadi NR, Al-Amran FG, Zigam QA. The cardioprotective effect of irbesartan in polymicrobial sepsis: The role of the P38 MAPK/ NF- ĸB signaling pathway. Herz. 2018;43(2):140-5. [Link] [DOI:10.1007/s00059-017-4537-6]
25. Chandrashekhar VM, Ranpariya VL, Ganapaty S, Parashar A, Muchandi AA. Neuroprotective activity of Matricaria recutita Linn against global model of ischemia in rats. J Ethnopharmacol. 2010;127(3):645-51. [Link] [DOI:10.1016/j.jep.2009.12.009]
26. Pokela M. Predictors of brain injury after experimental hypothermic circulatory arrest: An experimental study using a chronic porcine model. Oulun yliopisto. 2003. [Link] [DOI:10.1080/14017430310006956]
27. Weigand MA, Hörner C, Bardenheuer HJ, Bouchon A. The systemic inflammatory response syndrome. Best Pract Res Clin Anaesthesiol. 2004;18(3):455-75.‏ [Link] [DOI:10.1016/j.bpa.2003.12.005]
28. Ebersoldt M, Sharshar T, Annane D. Sepsis-associated delirium. Intensive Care Med. 2007;33:941-50. [Link] [DOI:10.1007/s00134-007-0622-2]
29. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304(16):1787-94. [Link] [DOI:10.1001/jama.2010.1553]
30. Sharshar T, Porcher R, Siami S, Rohaut B, Bailly-Salin J, Hopkinson NS, et al. Brainstem responses can predict death and delirium in sedated patients in intensive care unit. Crit Care Med. 2011;39(8):1960-7. [Link] [DOI:10.1097/CCM.0b013e31821b843b]
31. Mina F, Comim CM, Dominguini D, Cassol-Jr OJ, DallIgna DM, Ferreira GK, et al. Il1-β involvement in cognitive impairment after sepsis. Molecular Neurobiol. 2014;49:1069-76. [Link] [DOI:10.1007/s12035-013-8581-9]
32. Chen J, Xia H, Zhang L, Zhang H, Wang D, Tao X. Protective effects of melatonin on sepsis-induced liver injury and dysregulation of gluconeogenesis in rats through activating SIRT1/STAT3 pathway. Biomed Pharmacother. 2019;117:109150. [Link] [DOI:10.1016/j.biopha.2019.109150]
33. Zhuo Y, Zhang S, Li C, Yang L, Gao H, Wang X. Resolvin D1 promotes SIRT1 expression to counteract the activation of STAT3 and NF-κB in mice with septic-associated lung injury. Inflammation. 2018;41:1762-71. [Link] [DOI:10.1007/s10753-018-0819-2]
34. Jiang Z, Tan J, Yuan Y, Shen J, Chen Y. Semaglutide ameliorates lipopolysaccharide-induced acute lung injury through inhibiting HDAC5-mediated activation of NF-κB signaling pathway. Hum Exp Toxicol. 2022;41:9603271221125931. [Link] [DOI:10.1177/09603271221125931]
35. Chen X, Chen S, Ren Q, Niu S, Pan X, Yue L, et al. Metabolomics provides insights into renoprotective effects of semaglutide in obese mice. Drug Des Dev Ther. 2022;16:3893-913. [Link] [DOI:10.2147/DDDT.S383537]
36. Karimy JK, Reeves BC, Kahle KT. Targeting TLR4-dependent inflammation in post-hemorrhagic brain injury. Expert Opin Ther Targets. 2020;24(6):525-33. [Link] [DOI:10.1080/14728222.2020.1752182]
37. Xue H, Li M. Protective effect of pterostilbene on sepsis-induced acute lung injury in a rat model via the JAK2/STAT3 pathway. Ann Transl Med. 2020;8(21):1452. [Link] [DOI:10.21037/atm-20-5814]
38. Appunni S, Gupta D, Rubens M, Ramamoorthy V, Singh HN, Swarup V. Deregulated protein kinases: Friend and foe in ischemic stroke. Mol Neurobiol. 2021;58(12):6471-89. [Link] [DOI:10.1007/s12035-021-02563-y]
39. Wu Q, Li D, Huang C, Zhang G, Wang Z, Liu J, et al. Glucose control independent mechanisms involved in the cardiovascular benefits of glucagon-like peptide-1 receptor agonists. Biomed Pharmacother. 2022;153:113517. [Link] [DOI:10.1016/j.biopha.2022.113517]
40. Altaş M, Meydan SEDAT, Aras M, Yılmaz N, Ulutaş KT, Okuyan HM, et al. Effects of ceftriaxone on ischemia/reperfusion injury in rat brain. J Clin Neurosci. 2013;20(3):457-61. [Link] [DOI:10.1016/j.jocn.2012.05.030]
41. Poupon-Bejuit L, Hughes MP, Liu W, Geard A, Faour-Slika N, Whaler S, et al. A GLP1 receptor agonist diabetes drug ameliorates neurodegeneration in a mouse model of infantile neurometabolic disease. Sci Rep. 2022;12(1):13825. [Link] [DOI:10.1038/s41598-022-17338-1]

Add your comments about this article : Your username or Email:
CAPTCHA