Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
Volume 15, Issue 1 (2023)                   Iran J War Public Health 2023, 15(1): 35-42 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)


How to cite this article
Abd Uljaleel A, Hassan E, Mohammad A, Hadi N. Protective Effect of Dulaglutide on Lung Injury in Endotoxemia Mouse Model. Iran J War Public Health 2023; 15 (1) :35-42
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
* Corresponding Author Address: Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq. Post Box: 21 (
Abstract   (649 Views)
Aims: Endotoxemia is the most common condition in patients treated in critical care units. This study aimed to investigate if dulaglutide may help to protect the lungs during endotoxemia by modulating the inflammatory and oxidative stress pathways. This study is self-funded. All authors contributed to the costs.
Materials & Methods: 20 adult male Swiss-albino mice aged 9–12 weeks, weighted 25–35g, were randomized into four equal groups (n=5), sham group (laparotomy without Cecal Ligation and Puncture (CLP), CLP group (laparotomy with CLP), vehicle group (normal saline 2 weeks before CLP), and dulaglutide group (0.6mg/kg twice weekly S.C for 2 weeks before CLP). After 24 hrs of sepsis, lung tissue was harvested and used to assess IL-6, Interleukin-IL-1β, TNF-α, MIF, TLR4, and 8-isoPGF2α, as well as histological examination.
Findings: Lung tissue levels of IL-6, IL-1β, TNF-α, MIF, TLR4, and F2-isoprostane were significantly higher in the sepsis group compared to the sham group (p<0.05), while dulaglutide group showed significantly lower level in these inflammatory mediators and oxidative stress compared to sepsis group (p<0.05). Histologically, all mice in the sepsis group showed a significant lung tissue injury (p<0.05), but this injury was significantly reduced in the dulaglutide pre-treated group (p<0.05).
Conclusion: Dulaglutide can attenuate acute lung injury during CLP-induced endotoxemia in mice through its modulating effects on TLR4 and oxidative stress, downstream signaling pathways, and subsequently decreased lung tissue levels of pro-inflammatory mediators.

1. Wilcox, ME, Daou M, Dionne JC, Dodek P, Englesakis M, Garland A, et al. Protocol for a scoping review of sepsis epidemiology. Syst Rev. 2022;11(1):125. [Link] [DOI:10.1186/s13643-022-02002-6]
2. Hamza RT, Majeed SA. Nephroprotective effect of melatonin in sepsis induces renal injury : CLP Mice Model. Lat Am J Pharm. 2021;40(4):589-96. [Link]
3. Mahapatra S, Heffner AC, Atarthi-Dugan JM. Septic shock (nursing). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023. [Link]
4. Gu WJ, Wan YD, Tie HT, Kan QC, Sun TW. Risk of acute lung injury/acute respiratory distress syndrome in critically ill adult patients with pre-existing diabetes: a meta-analysis. PLoS One. 2014;9(2):e90426. [Link] [DOI:10.1371/journal.pone.0090426]
5. Mikkelsen ME, Shah CV, Meyer NJ, Gaieski DF, Lyon S, Miltiades AN, et al. The epidemiology of acute respiratory distress syndrome in patients presenting to the emergency department with severe sepsis. Shock. 2013;40(5):375-81. [Link] [DOI:10.1097/SHK.0b013e3182a64682]
6. Hotchkiss RS, Moldawer LL, Opal SM, Reinhart K, Turnbull IR, Vincent JL. Sepsis and septic shock. Nat Rev Dis Primers. 2016;2:16045. [Link] [DOI:10.1038/nrdp.2016.45]
7. Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, García-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol. 2017;8:81 [Link] [DOI:10.3389/fimmu.2017.00081]
8. Kim WY, Hong SB. Sepsis and acute respiratory distress syndrome: Recent update. Tuberc Respir Dis (Seoul). 2016;79(2):53-7. [Link] [DOI:10.4046/trd.2016.79.2.53]
9. Chimenti L, Morales-Quinteros L, Puig F, Camprubi-Rimblas M, Guillamat-Prats R, Gómez MN, et al. Comparison of direct and indirect models of early induced acute lung injury. Intensive Care Med Exp. 2020;8(Suppl 1):62. [Link] [DOI:10.1186/s40635-020-00350-y]
10. Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage. Nat Rev Drug Discov. 2005;4(10):854-65. [Link] [DOI:10.1038/nrd1854]
11. Jawad AS, Hassan ES, Mohammad AR. Protective effect of empagliflozin from acute renal injury during endotoxemia in mice model. Lat Am J Pharm. 2022;41(4):463-71. [Link]
12. Remick DG. Pathophysiology of sepsis. Am J Pathol. 2007;170(5):1435-44. [Link] [DOI:10.2353/ajpath.2007.060872]
13. Chavez A, Smith M, Mehta D. New insights into the regulation of vascular permeability. Int Rev Cell Mol Biol. 2011;290:205-48. [Link] [DOI:10.1016/B978-0-12-386037-8.00001-6]
14. Bakowitz M, Bruns B, McCunn M. Acute lung injury and the acute respiratory distress syndrome in the injured patient. Scand J Trauma Resusc Emerg Med. 2012;20:54. [Link] [DOI:10.1186/1757-7241-20-54]
15. Dolmatova EV, Wang K, Mandavilli R, Griendling KK. The effects of sepsis on endothelium and clinical implications. Cardiovasc Res. 2021;117(1):60-73. [Link] [DOI:10.1093/cvr/cvaa070]
16. Mohammad AR, Hadi AR, Hassan ES. Potential protective effect of Ibrutinib from acute brain injury during endotoxemia in mice. Lat Am J Pharm. 2022;41(2):472-80. [Link]
17. Hassan ES, Jawad AS, Mohammad AR. Protective effect of liraglutide from acute renal injury during endotoxemia in mice mode. Lat Am J Pharm. 2022;41(2):428-36. [Link]
18. Hussein SN, Majeed SA, Ghafil FA, Hassan ES, Hadi NR. Toll-like receptors 4 antagonist, Ibudilast, ameliorates acute renal impairment induced by sepsis in an experimental model. Bull National Instit Health. 2022;140(7):2900-09. [Link]
19. Hu R, Xu H, Jiang H, Zhang Y, Sun Y. The role of TLR4 in the pathogenesis of indirect acute lung injury. Front Biosci (Landmark Ed). 2013;18(4):1244-55. [Link] [DOI:10.2741/4176]
20. Togbe D, Schnyder-Candrian S, Schnyder B, Doz E, Noulin N, Janot L, et al. Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury. Int J Exp Pathol. 2007;88(6):387-91. [Link] [DOI:10.1111/j.1365-2613.2007.00566.x]
21. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. [Link] [DOI:10.1038/sigtrans.2017.23]
22. Voiriot G, Razazi K, Amsellem V, Tran Van Nhieu J, Abid S, Adnot S, et al. Interleukin-6 displays lung anti-inflammatory properties and exerts protective hemodynamic effects in a double-hit murine acute lung injury. Respir Res. 2017;18(1):64. [Link] [DOI:10.1186/s12931-017-0553-6]
23. Vaporidi K, Voloudakis G, Priniannakis G, Kondili E, Koutsopoulos A, Tsatsanis C, et al. Effects of respiratory rate on ventilator-induced lung injury at a constant PaCO2 in a mouse model of normal lung. Crit Care Med. 2008;36(4):1277-83. [Link] [DOI:10.1097/CCM.0b013e318169f30e]
24. Remick DG, Bolgos G, Copeland S, Siddiqui J. Role of interleukin-6 in mortality from and physiologic response to sepsis. Infect Immun. 2005;73(5):2751-7. [Link] [DOI:10.1128/IAI.73.5.2751-2757.2005]
25. Kumar V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Front Immunol. 2020;11:1722. [Link] [DOI:10.3389/fimmu.2020.01722]
26. Grieb G, Merk M, Bernhagen J, Bucala R. Macrophage migration inhibitory factor (MIF): a promising biomarker. Drug News Perspect. 2010;23(4):257-64. [Link] [DOI:10.1358/dnp.2010.23.4.1453629]
27. Meawed TE, Mansour MA, Mansour SA, Mohamed ML, Ibrahim EM, Ali AM. Functional and prognostic relevance of -173 G/C gene polymorphism of macrophage migration inhibitory factor in sepsis patients in Egyptian intensive care units. East Mediterr Health J. 2015;21(10):762-9. [Link] [DOI:10.26719/2015.21.10.762]
28. Milne GL, Musiek ES, Morrow JD. F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomarkers. 2005;10 Suppl 1:S10-23. [Link] [DOI:10.1080/13547500500216546]
29. Granata S, Votrico V, Spadaccino F, Catalano V, Netti GS, Ranieri E, et al. Oxidative stress and ischemia/reperfusion injury in kidney transplantation: focus on ferroptosis, mitophagy and new antioxidants. Antioxidants (Basel). 2022;11(4):769. [Link] [DOI:10.3390/antiox11040769]
30. Kadiiska MB, Basu S, Brot N, Cooper C, Saari Csallany A, Davies MJ, et al. Biomarkers of oxidative stress study V: ozone exposure of rats and its effect on lipids, proteins, and DNA in plasma and urine. Free Radic Biol Med. 2013;61:408-15. [Link] [DOI:10.1016/j.freeradbiomed.2013.04.023]
31. Soffler C, Campbell VL, Hassel DM. Measurement of urinary F2-isoprostanes as markers of in vivo lipid peroxidation: a comparison of enzyme immunoassays with gas chromatography-mass spectrometry in domestic animal species. J Vet Diagn Invest. 2010;22(2):200-9. [Link] [DOI:10.1177/104063871002200205]
32. Hinnen D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectr. 2017;30(3):202-10. [Link] [DOI:10.2337/ds16-0026]
33. Wang R, Wang N, Han Y, Xu J, Xu Z. Dulaglutide alleviates LPS-induced injury in cardiomyocytes. ACS Omega. 2021;6(12):8271-8. [Link] [DOI:10.1021/acsomega.0c06326]
34. Hussain M, Xu C, Ahmad M, Majeed A, Lu M, Wu X, et al. Acute respiratory distress syndrome: Bench-to-bedside approaches to improve drug development. Clin Pharmacol Ther. 2018;104(3):484-94. [Link] [DOI:10.1002/cpt.1034]
35. Hurford WE. Neuromuscular blockade applicability in early acute respiratory distress syndrome. Anesthesiology. 2020;132(6):1577-84. [Link] [DOI:10.1097/ALN.0000000000003180]
36. Sanada J, Obata A, Obata Y, Fushimi Y, Shimoda M, Kohara K, et al. Dulaglutide exerts beneficial anti atherosclerotic effects in ApoE knockout mice with diabetes: the earlier, the better. Sci Rep. 2021;11(1):1425. [Link] [DOI:10.1038/s41598-020-80894-x]
37. Drosatos K, Khan RS, Trent CM, Jiang H, Son NH, Blaner WS, et al. Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ Heart Fail. 2013;6(3):550-62. [Link] [DOI:10.1161/CIRCHEARTFAILURE.112.000177]
38. Wellington D, Mikaelian I, Singer L. Comparison of ketamine-xylazine and ketamine-dexmedetomidine anesthesia and intraperitoneal tolerance in rats. J Am Assoc Lab Anim Sci. 2013;52(4):481-7. [Link]
39. Yousif NG, Hadi NR, Al-Amran FG, Zigam QA. The cardioprotective effect of irbesartan in polymicrobial sepsis : the role of the P38 MAPK/ NF- ĸB signaling pathway. Herz. 2018;43(2):140-5. [Link] [DOI:10.1007/s00059-017-4537-6]
40. Hadi NR, Al-amran FG, Hussein AA. Effects of thyroid hormone analogue and a leukotrienes pathway-blocker on renal ischemia/reperfusion injury in mice. BMC Nephrol. 2011;12:70. [Link] [DOI:10.1186/1471-2369-12-70]
41. Chandrashekhar VM, Ranpariya VL, Ganapaty S, Parashar A, Muchandi AA. Neuroprotective activity of Matricaria recutita Linn against global model of ischemia in rats. J Ethnopharmacol. 2010;127(3):645-51. [Link] [DOI:10.1016/j.jep.2009.12.009]
42. Zahran R, Ghozy A, Elkholy SS, El-Taweel F, El-Magd MA. Combination therapy with melatonin, stem cells and extracellular vesicles is effective in limiting renal ischemia-reperfusion injury in a rat model. Int J Urol. 2020;27(11):1039-49. [Link] [DOI:10.1111/iju.14345]
43. Polat G, Ugan RA, Cadirci E, Halici Z. Sepsis and septic shock: Current treatment strategies and new approaches. Eurasian J Med. 2017;49(1):53-8. [Link] [DOI:10.5152/eurasianjmed.2017.17062]
44. Rose-John S. Local and systemic effects of interleukin-6 (IL-6) in inflammation and cancer. FEBS Lett. 2022;596(5):557-66. [Link] [DOI:10.1002/1873-3468.14220]
45. Yi G, Liang M, Li M, Fang X, Liu J, Lai Y, et al. A large lung gene expression study identifying IL1B as a novel player in airway inflammation in COPD airway epithelial cells. Inflamm Res. 2018;67(6):539-51. [Link] [DOI:10.1007/s00011-018-1145-8]
46. Xue H, Li M. Protective effect of pterostilbene on sepsis-induced acute lung injury in a rat model via the JAK2/STAT3 pathway. Ann Transl Med. 2020;8(21):1452. [Link] [DOI:10.21037/atm-20-5814]
47. Tilstam PV, Schulte W, Holowka T, Kim BS, Nouws J, Sauler M, et al. MIF but not MIF-2 recruits' inflammatory macrophages in an experimental polymicrobial sepsis model. J Clin Invest. 2021;131(23):e127171. [Link] [DOI:10.1172/JCI127171]
48. Chao C-H, Chen H-R, Chuang Y-C, Yeh T-M. Macrophage migration inhibitory factor-induced autophagy contributes to thrombin-triggered endothelial hyperpermeability in sepsis. Shock. 2018;50(1):103-11. [Link] [DOI:10.1097/SHK.0000000000000976]
49. Wu S, Lin C, Zhang T, Zhang B, Jin Y, Wang H, et al. Pentamidine alleviates inflammation and lipopolysaccharide- induced sepsis by inhibiting TLR4 activation via targeting MD2. Front Pharmacol. 2022;13:835081. [Link] [DOI:10.3389/fphar.2022.835081]
50. Senousy SR, Ahmed AF, Abdelhafeez DA, Khalifa MMA, Abourehab MAS, El-Daly M. Alpha-chymotrypsin protects against acute lung, kidney, and liver injuries and increases survival in CLP-induced sepsis in rats through inhibition of TLR4/NF-κB pathway. Drug Des Devel Ther. 2022;16:3023-39. [Link] [DOI:10.2147/DDDT.S370460]
51. Ibrahim YF, Moussa RA, Bayoumi AM, Ahmed A-SF. Inflammopharmacology. 2020;28(1):215-30. [Link] [DOI:10.1007/s10787-019-00628-y]
52. Ali H, Khan A, Ali J, Ullah H, Khan A, Ali H, et al. Attenuation of LPS-induced acute lung injury by continentalic acid in rodents through inhibition of inflammatory mediators correlates with increased Nrf2 protein expression. BMC Pharmacol Toxicol. 2020;21(1):81. [Link] [DOI:10.1186/s40360-020-00458-7]
53. Chen S, Kuang M, Qu Y, Huang S, Gong B, Lin S, et al. Expression of serum cytokines profile in neonatal sepsis. Infect Drug Resist. 2022;15:3437-45. [Link] [DOI:10.2147/IDR.S368772]
54. Chen J-X, O'Mara PW, Poole SD, Brown N, Ehinger NJ, Slaughter JC, et al. Isoprostanes as physiological mediators of transition to newborn life: novel mechanisms regulating patency of the term and preterm ductus arteriosus. Pediatr Res. 2012;72(2):122-8. [Link] [DOI:10.1038/pr.2012.58]
55. Chen S, Li X, Wang Y, Mu P, Chen C, Huang P, et al. Ginsenoside Rb1 attenuates intestinal ischemia/reperfusion induced inflammation and oxidative stress via activation of the PI3K/Akt/Nrf2 signaling pathway. Mol Med Rep. 2019;19(5):3633-41. [Link] [DOI:10.3892/mmr.2019.10018]
56. Zi S-f, Li J-h, Liu L, Deng C, Ao X, Chen D-D, et al. Dexmedetomidine-mediated protection against septic liver injury depends on TLR4/MyD88/NF-kappaB signaling downregulation partly via cholinergic anti-inflammatory mechanisms. Int Immunopharmacol. 2019;76:105898. [Link] [DOI:10.1016/j.intimp.2019.105898]
57. Jin YH, Li ZT, Chen H, Jiang XQ, Zhang YY, Wu F. Effect of dexmedetomidine on kidney injury in sepsis rats through TLR4/MyD88/NF-kappaB/iNOS signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(11):5020-5. [Link]
58. Kim GW, Lee NR, Pi RH, Lim YS, Lee YM, Lee JM, et al. IL-6 inhibitors for treatment of rheumatoid arthritis: past, present, and future. Arch Pharm Res. 2015;38(5):575-84. [Link] [DOI:10.1007/s12272-015-0569-8]
59. Herwald H, Egesten A. On PAMPs and DAMPs. J Innate Immun. 2016;8(5):427-8. [Link] [DOI:10.1159/000448437]
60. Zheng W, Pan H, Wei L, Gao F, Lin X. Dulaglutide mitigates inflammatory response in fibroblast-like synoviocytes. Int Immunopharmacol. 2019;74:105649. [Link] [DOI:10.1016/j.intimp.2019.05.034]
61. Xu J, Wei G, Wang J, Zhu J, Yu M, Zeng X, et al. Glucagon-like peptide-1 receptor activation alleviates lipopolysaccharide-induced acute lung injury in mice via maintenance of endothelial barrier function. Lab Invest. 2019;99(4): 577-87. [Link] [DOI:10.1038/s41374-018-0170-0]
62. Lei J, Wei Y, Song P, Li Y, Zhang T, Feng Q, et al. Cordycepin inhibits LPS-induced acute lung injury by inhibiting inflammation and oxidative stress. Eur J Pharmacol. 2018;818:110-4. [Link] [DOI:10.1016/j.ejphar.2017.10.029]
63. Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest. 2013;144(1):266-73. [Link] [DOI:10.1378/chest.12-2664]
64. Zheng L, Fei J, Feng C-M, Xu Z, Fu L, Zhao H. Serum 8-iso-PGF2α predicts the severity and prognosis in patients with community-acquired pneumonia: a retrospective cohort study. Front Med. 2021;8:633442. [Link] [DOI:10.3389/fmed.2021.633442]
65. Reddy IA, Pino JA, Weikop P, Osses N, Sørensen G, Bering T, et al. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels. Transl Psychiatry. 2016;6(5):e809. [Link] [DOI:10.1038/tp.2016.86]
66. Li H, Xu X, Wang J, Kong X, Chen M, Jing T, et al. A randomized study to compare the effects of once-weekly dulaglutide injection and once-daily glimepiride on glucose fluctuation of type 2 diabetes mellitus patients: a 26-week follow-up. J Diabetes Res. 2019;2019:6423987. [Link] [DOI:10.1155/2019/6423987]
67. Balk-Moller E, Windelov JA, Svendsen B, Hunt J, Ghiasi SM, Sorensen CM et al. Glucagon-like peptide 1 and atrial natriuretic peptide in a female mouse model of obstructive pulmonary disease. J Endocr Soc. 2019;4(1):bvz034. [Link] [DOI:10.1210/jendso/bvz034]
68. Viby NE, Isidor MS, Buggeskov KB, Poulsen SS, Hansen JB, Kissow H. Glucagon-like peptide-1 (GLP-1) reduces mortality and improves lung function in a model of experimental obstructive lung disease in female mice. Endocrinology. 2013;154(12):4503-11. [Link] [DOI:10.1210/en.2013-1666]
69. Zhu T, Li C, Zhang X, Ye C, Tang S, Zhang W, et al. GLP-1 analogue liraglutide enhances SP-A expression in LPS-induced acute lung injury through the TTF-1 signaling pathway. Mediators Inflamm. 2018;2018:3601454. [Link] [DOI:10.1155/2018/3601454]
70. Zhou W, Shao W, Zhang Y, Liu D, Liu M, Jin T. Glucagon-like peptide-1 receptor mediates the beneficial effect of Liraglutide in an acute lung injury mouse model involving the thioredoxin interacting protein. American Journal of Physiology-Endocrinology and Metabolism. Am J Physiol Endocrinol Metab. 2020;319(3):E568-78. [Link] [DOI:10.1152/ajpendo.00292.2020]

Add your comments about this article : Your username or Email: