Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
JMERC
0.3
Volume 15, Issue 1 (2023)                   Iran J War Public Health 2023, 15(1): 67-75 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)


History

How to cite this article
Abd Uljaleel A, Hassan E. Protective Effect of Ertugliflozin against Acute Lung Injury Caused by Endotoxemia Model in Mice. Iran J War Public Health 2023; 15 (1) :67-75
URL: http://ijwph.ir/article-1-1307-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
* Corresponding Author Address: Department of Pharmacology & Therapeutics, Faculty of Medicine, University of Kufa, Kufa Street, Najaf, Iraq. P.O. Box: 21 (ekhlass.khazaal@uokufa.edu.iq)
Abstract   (545 Views)
Aims: Endotoxemic shock is characterized by multiple organ dysfunction, acute Lung Injury, acute respiratory distress syndrome, and high mortality. This study aimed to investigate the protective effect of ertugliflozin against acute lung injury during endotoxemia.
Materials & Methods: Twenty adult Swiss-albino male mice, 9–13 weeks old, weighing 20–35 g, were divided into four groups (n=5) at random: the sham group (laparotomy without Cecal Ligation Puncture, CLP), the sepsis group (CLP), the vehicle group (DMSO for one week), and the ertugliflozin group (20 mg/kg/day orally for one week before CLP). After 24 hours of CLP, the lung tissue was removed and used for histological analysis. The inflammatory cytokines, including IL-1β, IL-6, TNF-alpha, TLR4, MIF, oxidative stress marker, and 8-isoPGF2-alpha, were measured.
Finding: In sepsis group, lung tissue levels of IL-6, IL-1, TNF-, MIF, TLR4 and F2-isoprostane were substantially greater than those in the sham group. In comparison to the sepsis group, the ertugliflozin treated mice exhibited significantly lower levels of inflammatory cytokines. Histologically, all of the mice in the sepsis group had considerable lung tissue injury, but in the ertugliflozin pre-treated group, there was a significant reduction in lung tissue injury.
Conclusion: Ertugliflozin attenuates lung dysfunction during endotoxemia in male mice via downstream inflammatory and oxidative stress signaling pathways.
 
Keywords:

References
1. Hamza RT, Majeed SA. Nephroprotective effect of melatonin in sepsis induces renal injury: CLP mice model. Lat Am J Pharm. 2022;40(4):589-96. [Link]
2. Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock. Intensive Care Med. 2021;47(11):1181-247. [Link] [DOI:10.1007/s00134-021-06506-y]
3. Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence. 2014;5(1):213-8. [Link] [DOI:10.4161/viru.27024]
4. Cecconi M, Evans L, Levy M, Rhodes A. Sepsis and septic shock. Lancet. 2018;392(10141):75-87. [Link] [DOI:10.1016/S0140-6736(18)30696-2]
5. Hasan Z, Palani K, Rahman M, Thorlacius H. Targeting CD44 expressed on neutrophils inhibits lung damage in abdominal sepsis. Shock. 2011;35(6):567-72. [Link] [DOI:10.1097/SHK.0b013e3182144935]
6. Ware LB. Pathophysiology of acute lung injury and the acute respiratory distress syndrome. Semin Respir Crit Care Med. 2006;27(4):337-49. [Link] [DOI:10.1055/s-2006-948288]
7. Diamond M, Peniston HL, Sanghavi D, Mahapatra S, et al. Acute respiratory distress syndrome. [Updated 2022 Oct 30-. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. [Link]
8. Nugent K, Dobbe L, Rahman R, Elmassry M, Paz P. Lung morphology and surfactant function in cardiogenic pulmonary edema: a narrative review. J Thorac Dis. 2019;11(9):4031-8. [Link] [DOI:10.21037/jtd.2019.09.02]
9. Ginsburg I, Korem M, Koren E, Varani J. Pro-inflammatory agents released by pathogens, dying host cells, and neutrophils act synergistically to destroy host tissues: a working hypothesis. J Inflamm Res. 2019;12:35-47. [Link] [DOI:10.2147/JIR.S190007]
10. Kang SS, Ren Y, Liu CC, Kurti A, Baker KE, Bu G, et al. Lipocalin-2 protects the brain during inflammatory conditions. Mol Psychiatry. 2018;23(2):344-50. [Link] [DOI:10.1038/mp.2016.243]
11. Hussein SN, Majeed SA, Ghafil FA, Hassan ES, Hadi NR. Toll-like receptors 4 antagonist, Ibudilast, ameliorates acute renal impairment induced by sepsis in an experimental model. Bull Nation Institut Health. 2022;140(7):2899-909. [Link]
12. Xing H, Li R, Qing Y, Ying B, Qin Y. Biomaterial-based osteoimmunomodulatory strategies via the TLR4-NF-κB signaling pathway: a review. Appl Mater Today. 2021;22:100969. [Link] [DOI:10.1016/j.apmt.2021.100969]
13. Hu R, Xu H, Jiang H, Zhang Y, Sun Y. The role of TLR4 in the pathogenesis of indirect acute lung injury. Front Biosci (Landmark Ed). 2013;18(4):1244-55. [Link] [DOI:10.2741/4176]
14. Dolmatova EV, Wang K, Mandavilli R, Griendling KK. The effects of sepsis on endothelium and clinical implications. Cardiovasc Res. 2021;117(1):60-73. [Link] [DOI:10.1093/cvr/cvaa070]
15. Kwon S-Y, Ro M, Kim JH. Mediatory roles of leukotriene B4 receptors in LPS-induced endotoxic shock. Sci Rep. 2019;9:5936. [Link] [DOI:10.1038/s41598-019-42410-8]
16. Balk RA. Systemic inflammatory response syndrome (SIRS): where did it come from and is it still relevant today? Virulence. 2014;5(1):20-6. [Link] [DOI:10.4161/viru.27135]
17. Jawad AS, Hassan ES, Mohammad AR. Protective effect of empagliflozin from acute renal injury during endotoxemia in mice model. Lat Am J Pharm. 2022;41(2):463-71. [Link]
18. Mohammad AR, Hadi AR, Hassan ES. Potential protective effect of ibrutinib from acute brain injury during endotoxemia in mice. Lat Am J Pharm. 2022;41(2):472-80. [Link]
19. Hassan ES, Jawad AS. Mohammad AR. Protective effect of liraglutide from acute renal injury during endotoxemia in mice mode. Lat Am J Pharm. 2022;41(2):428-36. [Link]
20. Deitch EA. Rodent models of intra-abdominal infection. Shock. 2005;24(Suppl 1):19-23. [Link] [DOI:10.1097/01.shk.0000191386.18818.0a]
21. Raven K. Rodent models of sepsis found shockingly lacking. Nat Med. 2012;18:998. [Link] [DOI:10.1038/nm0712-998a]
22. Miao Z, Nucci G, Amin N, Sharma R, Mascitti V, Tugnait M, et al. Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male subjects. Drug Metab Dispos. 2013;41(2):445-56. [Link] [DOI:10.1124/dmd.112.049551]
23. Kovacich N, Chavez B. Ertugliflozin (Steglatro): a new option for SGLT2 inhibition. P T. 2018;43(12):736-42. [Link]
24. Nguyen VK, White JR. Overview of Ertugliflozin. Clin Diabetes. 2019;37(2):176-8. [Link] [DOI:10.2337/cd18-0097]
25. Ahrén B. Novel combination treatment of type 2 diabetes DPP-4 inhibition + metformin. Vasc Health Risk Manag. 2008;4(2):383-94. [Link] [DOI:10.2147/VHRM.S1944]
26. Kalgutkar AS, Tugnait M, Zhu T, Kimoto E, Miao Z, Mascitti V, et al. Preclinical species and human disposition of PF-04971729, a selective inhibitor of the sodium-dependent glucose cotransporter 2 and clinical candidate for the treatment of type 2 diabetes mellitus. Drug Metab Dispos. 2011;39(9):1609-19. [Link] [DOI:10.1124/dmd.111.040675]
27. Cinti F, Moffa S, Impronta F, Cefalo CM, Sun VA, Sorice GP, et a. Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: evidence to date. Drug Des Devel Ther. 2017;11:2905-19. [Link] [DOI:10.2147/DDDT.S114932]
28. Tentolouris A, Vlachakis P, Tzeravini E, Eleftheriadou I, Tentolouris N. SGLT2 inhibitors: a review of their antidiabetic and cardioprotective effects. Int J Environ Res Public Health. 2019;16(16):2965. [Link] [DOI:10.3390/ijerph16162965]
29. Saxena S, Meher K, Rotella M, Vangala S, Chandran S, Malhotra N, et al. Identification of SGLT2 inhibitor Ertugliflozin as a treatment for COVID-19 using computational and experimental paradigm. Biorexiv, 2021. [Link] [DOI:10.1101/2021.06.18.448921]
30. Lin F, Song C, Zeng Y, Li Y, Li H, Liu B, et al. Canagliflozin alleviates LPS-induced acute lung injury by modulating alveolar macrophage polarization. Int Immunopharmacol. 2020;88:106969. [Link] [DOI:10.1016/j.intimp.2020.106969]
31. Basalay MV, Arjun S, Davidson SM, Yellon DM. The role of parasympathetic mechanisms in the infarct-limiting effect of SGLT2 inhibitor ertugliflozin. Biorxiv 2021. [Link] [DOI:10.1101/2021.10.01.462765]
32. Drosatos K, Khan RS, Trent CM, Jiang H, Son N-H, Blaner WS, et al. Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ Heart Fail. 2013;6(3):550-62. [Link] [DOI:10.1161/CIRCHEARTFAILURE.112.000177]
33. Wellington D, Mikaelian I, Singer L. Comparison of ketamine-xylazine and ketamine-dexmedetomidine anesthesia and intraperitoneal tolerance in rats. J Am Assoc Lab Anim Sci. 2013;52(4):481-7. [Link]
34. Yousif NG, Hadi NR, Al-Amran FG, Zigam QA. The cardioprotective effect of irbesartan in polymicrobial sepsis: the role of the P38 MAPK/ NF- ĸB signaling pathway. Herz. 2018;43(2):140-5. [Linkvvvv] [DOI:10.1007/s00059-017-4537-6]
35. Hadi NR, Al-amran FG, Hussein AA. Effects of thyroid hormone analogue and a leukotrienes pathway-blocker on renal ischemia/reperfusion injury in mice. BMC Nephrol. 2011;12:70. [Link] [DOI:10.1186/1471-2369-12-70]
36. Chandrashekhar VM, Ranpariya VL, Ganapaty S, Parashar A, Muchandi AA. Neuroprotective activity of Matricaria recutita Linn against global model of ischemia in rats. J Ethnopharmacol. 2010;127(3):645-51. [Link] [DOI:10.1016/j.jep.2009.12.009]
37. Zahran R, Ghozy A, Elkholy SS, El-Taweel F, El-Magd MA. Combination therapy with melatonin, stem cells and extracellular vesicles is effective in limiting renal ischemia-reperfusion injury in a rat model. Int J Urol. 2020;27(11):1039-49. [Link] [DOI:10.1111/iju.14345]
38. Gyawali B, Ramakrishna K, Dhamoon AS. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med. 2019;7:2050312119835043. [Link] [DOI:10.1177/2050312119835043]
39. Costa ELV, Schettino IAL, Schettino GPP. The lung in sepsis: guilty or innocent? Endocr Metab Immune Disord Drug Targets. 2006;6(2):213-6. [Link] [DOI:10.2174/187153006777442413]
40. Wang YM, Ji R, Chen WW, Huang SW, Zheng YJ, Yang ZT, et al. Paclitaxel alleviated sepsis-induced acute lung injury by activating MUC1 and suppressing TLR-4/NF-κB pathway. Drug Des Devel Ther. 2019;13:3391-404. [Link] [DOI:10.2147/DDDT.S222296]
41. Xue H, Li M. Protective effect of pterostilbene on sepsis-induced acute lung injury in a rat model via the JAK2/STAT3 pathway. Ann Transl Med. 2020;8(21):1452. [Link] [DOI:10.21037/atm-20-5814]
42. 42 Kong Q, Wu X, Qiu Z, Huang Q, Xia Z, Song X. Protective effect of dexmedetomidine on acute lung injury via the upregulation of tumour necrosis factor-α-induced protein-8-like 2 in septic mice. Inflammation. 2020;43(3):833-46. [Link] [DOI:10.1007/s10753-019-01169-w]
43. Xu J, Wei G, Wang J, Zhu J, Yu M, Zeng X, et al. Glucagon-like peptide-1 receptor activation alleviates lipopolysaccharide-induced acute lung injury in mice via maintenance of endothelial barrier function. Lab Investig. 2019;99(4):577-87. [Link] [DOI:10.1038/s41374-018-0170-0]
44. Luo L, Lucas RM, Liu L, Stow JL. Signalling, sorting and scaffolding adaptors for Toll-like receptors. J Cell Sci. 2019;133(5):jcs239194. [Link] [DOI:10.1242/jcs.239194]
45. Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell. 2017;168(1-2):37-57. [Link] [DOI:10.1016/j.cell.2016.12.012]
46. Wu Y, Liu Y, Huang H, Zhu Y, Zhang Y, Lu F, et al. Dexmedetomidine inhibits inflammatory reaction in lung tissues of septic rats by suppressing TLR4/NF-κB pathway. Mediators Inflamm. 2013;2013:562154. [Link] [DOI:10.1155/2013/562154]
47. Duan Q, Jia Y, Qin Y, Jin Y, Hu H, Chen J. Narciclasine attenuates LPS-induced acute lung injury in neonatal rats through suppressing inflammation and oxidative stress. Bioengineered. 2020;11(1):801-10. [Link] [DOI:10.1080/21655979.2020.1795424]
48. Alnfakh ZA, Al-Nafakh RT, Hameed AMA, Abdelhussain MA, Hadi NR. Lung protective potential effect of zileuton during endotoxaemia model in male mice. Wiad Lek. 2022;75(12):3066-73. [Link] [DOI:10.36740/WLek202212130]
49. Heerspink HJL, Perco P, Mulder S, Leierer J, Hansen MK, Heinzel A, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia. 2019;62(7):1154-66. [Link] [DOI:10.1007/s00125-019-4859-4]
50. Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, et al. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65(9): 2784-94. [Link] [DOI:10.2337/db16-0058]
51. Bray JJ, Foster-Davies H, Stephens JW. A systematic review examining the effects of sodium-glucose cotransporter-2 inhibitors (SGLT2is) on biomarkers of inflammation and oxidative stress. Diabetes Res Clin Pract. 2020;168: 108368. [Link] [DOI:10.1016/j.diabres.2020.108368]
52. Abd El-Fattah EE, Saber S, Mourad AAE, El-Ahwany E, Amin NA, Cavalu S, et al. The dynamic interplay between AMPK/NFκB signaling and NLRP3 is a new therapeutic target in inflammation: Emerging role of dapagliflozin in overcoming lipopolysaccharide-mediated lung injury. Biomed Pharmacother. 2022;147:112628. [Link] [DOI:10.1016/j.biopha.2022.112628]
53. Huang BP, Lin CH, Chen HM, Lin JT, Cheng YF, Kao SH. AMPK activation inhibits expression of proinflammatory mediators through downregulation of PI3K/p38 MAPK and NF-κB signaling in murine macrophages. DNA Cell Biol. 2015;34(2):133-41. [Link] [DOI:10.1089/dna.2014.2630]
54. Panchapakesan U, Pegg K, Gross S, Komala Mg, Mudaliar H, orbes J, et al. Effects of SGLT2 inhibition in human kidney proximal tubular cells-renoprotection in diabetic nephropathy? PLoS One. 2013;8(2):e54442. [Link] [DOI:10.1371/journal.pone.0054442]
55. Ashrafi Jigheh Z, Ghorbani Haghjo A, Argani H, Roshangar L, Rashtchizadeh N, Sanajou D, et al. Empagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis. Iran J Basic Med Sci. 2019;22(4):384-90. [Link]
56. Ishibashi Y, Matsui T, Yamagishi SI. Tofogliflozin, a highly selective inhibitor of SGLT2 blocks proinflammatory and proapoptotic effects of glucose overload on proximal tubular cells partly by suppressing oxidative stress generation. Horm Metab Res. 2016;48(3):191-5. [Link] [DOI:10.1055/s-0035-1555791]
57. Osorio H, Coronel I, Arellano A, Pacheco U, Bautista R, Franco M, et al. Sodium-glucose cotransporter inhibition prevents oxidative stress in the kidney of diabetic rats. Oxid Med Cell Longev. 2012;2012:542042. [Link] [DOI:10.1155/2012/542042]
58. Sugizaki T, Zhu S, Guo G, Matsumoto A, Zhao J, Endo M, et al. Treatment of diabetic mice with the SGLT2 inhibitor TA‐1887 antagonizes diabetic cachexia and decreases mortality. NPJ Aging Mech Dis. 2017;3:12. [Link] [DOI:10.1038/s41514-017-0012-0]
59. Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, et al. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. European Journal of Pharmacology. 2013;715(1‐3): 246-55. [Link] [DOI:10.1016/j.ejphar.2013.05.014]
60. Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015;4:180-3. [Link] [DOI:10.1016/j.redox.2015.01.002]
61. Terami N, Ogawa D, Tachibana H, Hatanaka T, Wada J, Nakatsuka A, et al. Long‐term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One. 2014;9(6):e100777. [Link] [DOI:10.1371/journal.pone.0100777]
62. Steven S, Oelze M, Hanf A, Kröller‐Schön S, Kashani F, Roohani S, et al. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol. 2017;13:370-85. [Link] [DOI:10.1016/j.redox.2017.06.009]
63. Kawanami D, Matoba K, Takeda Y, Nagai Y, Akamine T, Yokota T, et al. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. Int J Mol Sci. 2017;18(5):1083. [Link] [DOI:10.3390/ijms18051083]
64. Gangadharan Komala M, Gross S, Mudaliar H, Huang C, Pegg K, Mather A, et al. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice. PLoS One. 2014;9(11):e108994. [Link] [DOI:10.1371/journal.pone.0108994]
65. Oelze M, Kröller‐Schön S, Welschof P, Jansen T, Hausding M, Mikhed Y, et al. The sodium-glucose co‐transporter 2 inhibitor empagliflozin improves diabetes‐induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS One. 2014;9(11):e112394. [Link] [DOI:10.1371/journal.pone.0112394]
66. Nishimura R, Tanaka Y, Koiwai K, Inoue K, Hach T, Salsali A, et al. Effect of empagliflozin monotherapy on postprandial glucose and 24-hour glucose variability in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled, 4-week study. Cardiovasc Diabetol. 2015;14:13. [Link] [DOI:10.1186/s12933-014-0169-9]
67. Solini A, Giannini L, Seghieri M, Vitolo E, Taddei S, Ghiadoni L, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol. 2017;16(1):138. [Link] [DOI:10.1186/s12933-017-0621-8]
68. Pignatelli P, Baratta F, Buzzetti R, D'Amico A, Castellani V, Bartimoccia et al. The Sodium-Glucose Co-Transporter-2 (SGLT2) inhibitors reduce platelet activation and thrombus formation by lowering NOX2-related oxidative stress: A pilot study. Antioxidants (Basel). 2022;11(10):1878. [Link] [DOI:10.3390/antiox11101878]
69. Zhou W, Shao W, Zhang Y, Liu D, Liu M, Jin T. Glucagon-like peptide-1 receptor mediates the beneficial effect of Liraglutide in an acute lung injury mouse model involving the thioredoxin interacting protein. American Journal of Physiology-Endocrinology and Metabolism. Am J Physiol Endocrinol Metab. 2020;319:E568-78. [Link] [DOI:10.1152/ajpendo.00292.2020]

Add your comments about this article : Your username or Email:
CAPTCHA