Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
JMERC
0.3
Volume 12, Issue 4 (2020)                   Iran J War Public Health 2020, 12(4): 249-258 | Back to browse issues page

Print XML PDF HTML


History

How to cite this article
Abdolahi S, Gorji A. COVID-19: the Potential Role of Nutritional Deficiencies, Global Climatic Changes, and Immune System Dysfunction. Iran J War Public Health 2020; 12 (4) :249-258
URL: http://ijwph.ir/article-1-900-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
Authors S. Abdolahi1, A. Gorji *2
1- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
2- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran , gorjial@uni-muenster.de
* Corresponding Author Address: Mashhad University of Medical Sciences, Mashhad, Iran Postal Code: 9177948564
Abstract   (2486 Views)
Aims: Climate change may weaken the human immune system. Nutrient deficiency also reduces the ability to fight infections, which is a major cause of immune system deficiencies. Climate change influences food security and, in turn, enhances the prevalence of malnutrition globally. The purpose of the present study was to accumulate evidence indicating the role of climate changes, food insecurity, and weakened immune systems in the COVID-19 pandemic.
Information & Methods: This review study was conducted using the keywords
Covid-19, pandemics, epidemics, climate change, micronutrients, the immune
system, and a search for domestic and international databases.
Findings: Significant associations were found between the unpredictable occurrence of new zoonotic pathogens and reduced immunity, micronutrient malnutrition, and global climate crisis.
Conclusion: Lack of integrative health care strategies may play a major role in viral epidemics. The evidence indicates that climate change and food shortage can debilitate the immune system and increase the risk of new epidemics.
 
Keywords:

References
1. Simpson S, Kaufmann MC, Glozman V, Chakrabarti A. Disease X: Accelerating the development of medical countermeasures for the next pandemic. Lancet Infect Dis. 2020;20;e108-15. [DOI:10.1016/S1473-3099(20)30123-7]
2. Nicola M, O'Neill N, Sohrabi C, Khan M, Agha M, Agha R. Evidence based management guideline for the COVID-19 pandemic-review article. Int J Surg. 2020;77;206-16. [DOI:10.1016/j.ijsu.2020.04.001]
3. Gorji S, Gorji A. COVID-19 pandemic: the possible influence of the long-term ignorance about climate change. Environ Sci Pollut Res. 2021;1-5. [DOI:10.1007/s11356-020-12167-z]
4. Gorji A, Ghadiri MK. The potential roles of micronutrient deficiency and immune system dysfunction in COVID-19 pandemic. Nutrition. 2020;111047. [DOI:10.1016/j.nut.2020.111047]
5. Arnold C. 10 years on, the world still learns from SARS. Lancet Infect Dis. 2013;13(5):394-5. [DOI:10.1016/S1473-3099(13)70116-6]
6. Beck MA, Levander OA. Host nutritional status and its effect on a viral pathogen. J Infect Dis. 2000;182 Suppl 1:S93-6. [DOI:10.1086/315918]
7. Chan NY, Ebi KL, Smith F, Wilson TF, Smith AE. An integrated assessment framework for climate change and infectious diseases. Environ Health Perspect. 1999;107(5):329-37. [DOI:10.1289/ehp.99107329]
8. Wei J, Hansen A, Zhang Y, Li H, Liu Q, Sun Y, et al. The impact of climate change on infectious disease transmission: Perceptions of CDC health professionals in Shanxi Province, China. PLoS One. 2014;9(10):e109476. [DOI:10.1371/journal.pone.0109476]
9. Lorentzen HF, Benfield T, Stisen S, Rahbek C. COVID-19 is possibly a consequence of the anthropogenic biodiversity crisis and climate changes. Dan Med J. 2020;67(5):A205025.
10. Chionh YT, Cui J, Koh J, Mendenhall IH, Ng JHJ, Low D, et al. High basal heat-shock protein expression in bats confers resistance to cellular heat/oxidative stress. Cell Stress Chaperones. 2019;24(4):835-49. [DOI:10.1007/s12192-019-01013-y]
11. Bell JE, Brown CL, Conlon K, Herring S, Kunkel KE, Lawrimore J, et al. Changes in extreme events and the potential impacts on human health. J Air Waste Manag Assoc. 2018;68(4):265-87. [DOI:10.1080/10962247.2017.1401017]
12. Wang C, Linderholm HW, Song Y, Wang F, Liu Y, Tian J, et al. Impacts of drought on maize and soybean production in Northeast China During the past five decades. Int J Environ Res Public Health. 2020;17(7):2459. [DOI:10.3390/ijerph17072459]
13. Klenert D, Funke F, Mattauch L, O'Callaghan B. Five lessons from COVID-19 for advancing climate change mitigation. Environ Resour Econ. 2020;76:751-78. [DOI:10.1007/s10640-020-00453-w]
14. Wheeler T, Von Braun J. Climate change impacts on global food security. Science. 2013;341(6145):508-13. [DOI:10.1126/science.1239402]
15. Beck MA, Matthews CC. Micronutrients and host resistance to viral infection. Proc Nutr Soc. 2000;59(4):581-5. [DOI:10.1017/S0029665100000823]
16. Tirado MC, Crahay P, Mahy L, Zanev C, Neira M, Msangi S, et al. Climate change and nutrition: Creating a climate for nutrition security. Food Nutr Bull. 2013;34(4):533-47. [DOI:10.1177/156482651303400415]
17. Statista.com [Internet]. New York: Statista; 2020 [Cited 2020 May 9]. Available from: https://www.statista.com
18. Ferrari D, Lombardi G, Strollo M, Pontillo M, Motta A, Locatelli M. Association between solar ultraviolet doses and vitamin D clinical routine data in European mid-latitude population between 2006 and 2018. Photochem Photobiol Sci. 2019;18(11):2696-706. [DOI:10.1039/C9PP00372J]
19. Grant WB, Giovannucci E. The possible roles of solar ultraviolet-B radiation and vitamin D in reducing case-fatality rates from the 1918-1919 influenza pandemic in the United States. Dermatoendocrinol. 2009;1(4):215-9. [DOI:10.4161/derm.1.4.9063]
20. Mawson AR. Role of fat-soluble vitamins A and D in the pathogenesis of influenza: A new perspective. ISRN Infect Dis. 2013;246737. [DOI:10.5402/2013/246737]
21. Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of vitamin A in the immune system. J Clin Med. 2018;7(9):258. [DOI:10.3390/jcm7090258]
22. Villamor E, Fawzi WW. Effects of vitamin a supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev. 2005;18(3):446-64. [DOI:10.1128/CMR.18.3.446-464.2005]
23. Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease. Clin Microbial Rev. 2015;28(2):465-522. [DOI:10.1128/CMR.00102-14]
24. Maggini S, Pierre A, Calder PC. Immune function and micronutrient requirements
25. change over the life course. Nutrients. 2018;10:1531. [DOI:10.3390/nu10101531]
26. Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front Nutr. 2019;6:48. [DOI:10.3389/fnut.2019.00048]
27. Mikkelsen K, Stojanovska L, Prakash M, Apostolopoulos V. The effects of vitamin B on the immune/cytokine network and their involvement in depression. Maturitas. 2017;96:58-71. [DOI:10.1016/j.maturitas.2016.11.012]
28. He W, Hu S, Du X, Wen Q, Zhong XP, Zhou X, et al. Vitamin B5 reduces bacterial growth via regulating innate immunity and adaptive immunity in mice infected with Mycobacterium tuberculosis. Front Immunol. 2018;9:365. [DOI:10.3389/fimmu.2018.00365]
29. Hamer DH, Sempértegui F, Estrella B, Tucker KL, Rodríguez A, Egas J, et al. Micronutrient deficiencies are associated with impaired immune response and higher burden of respiratory infections in elderly Ecuadorians. J Nutr. 2009;139(1):113-9. [DOI:10.3945/jn.108.095091]
30. Kesel AJ. A system of protein target sequences for anti-RNA-viral chemotherapy by a vitamin B6-derived zinc-chelating trioxa-adamantane-triol. Bioorg Med Chem. 2003;11(21):4599-613. [DOI:10.1016/S0968-0896(03)00500-5]
31. Ang A, Pullar JM, Currie MJ, Vissers MC. Vitamin C and immune cell function in inflammation and cancer. Biochem Soc Trans. 2018;46(5):1147-59. [DOI:10.1042/BST20180169]
32. Marik PE. Vitamin C: An essential "stress hormone" during sepsis. J Thorac Dis. 2020;12(Suppl 1):S84-8. [DOI:10.21037/jtd.2019.12.64]
33. Kim S, Karasuyama H, Lopez AF, Ouyang W, Li X, Le Gros G, Min B. IL-4 derived from non-T cells induces basophil-and IL-3-independent Th2 immune responses. Immune Netw. 2013;13(6):249-56. [DOI:10.4110/in.2013.13.6.249]
34. Erol N, Saglam L, Saglam YS, Erol HS, Altun S, Aktas MS, et al. The protection potential of antioxidant vitamins against acute respiratory distress syndrome: A rat trial. Inflammation. 2019;42(5):1585-94. [DOI:10.1007/s10753-019-01020-2]
35. Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O'Garra A. 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol. 2001;167(9):4974-80. [DOI:10.4049/jimmunol.167.9.4974]
36. Telcian AG, Zdrenghea MT, Edwards MR, Laza-Stanca V, Mallia P, Johnston SL, et al. Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro. Antiviral Res. 2017;137:93-101. [DOI:10.1016/j.antiviral.2016.11.004]
37. Sims AC, Tilton SC, Menachery VD, Gralinski LE, Schäfer A, Matzke MM, et al. Release of severe acute respiratory syndrome coronavirus nuclear import block enhances host transcription in human lung cells. J Virol. 2013;87(7):3885-902. [DOI:10.1128/JVI.02520-12]
38. Schottker B, Jorde R, Peasey A, Thorand B, Jansen EH, Groot L, et al. Vitamin D and mortality: Meta-analysis of individual participant data from a large consortium of cohort studies from Europe and the United States. BMJ. 2014;348:g3656. [DOI:10.1136/bmj.g3656]
39. Antico A, Tampoia M, Tozzoli R, Bizzaro N. Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmun Rev. 2012;12(2):127-36. [DOI:10.1016/j.autrev.2012.07.007]
40. Lee GY, Han SN. The role of vitamin E in immunity. Nutrients. 2018;10(11):1614. [DOI:10.3390/nu10111614]
41. Han SN, Wu D, Ha WK, Beharka A, Smith DE, Bender BS, et al. Vitamin E supplementation increases T helper 1 cytokine production in old mice infected with influenza virus. Immunology. 2000;100(4):487-93. [DOI:10.1046/j.1365-2567.2000.00070.x]
42. Leshchinsky TV, Klasing KC. Relationship between the level of dietary vitamin E and the immune response of broiler chickens. Poult Sci. 2001;80(11):1590-9. [DOI:10.1093/ps/80.11.1590]
43. Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. 2017;25(1):11-24. [DOI:10.1007/s10787-017-0309-4]
44. Meydani SN, Barnett JB, Dallal GE, Fine BC, Jacques PF, Leka LS, et al. Serum zinc and pneumonia in nursing home elderly. Am J Clin Nutr. 2007;86(4):1167-73. [DOI:10.1093/ajcn/86.4.1167]
45. Hao W, Wojdyla JA, Zhao R, Han R, Das R, Zlatev I, et al. Crystal structure of Middle East respiratory syndrome coronavirus helicase. PLoS Pathog. 2017;13(6):e1006474. [DOI:10.1371/journal.ppat.1006474]
46. Gill H, Walker G. Selenium, immune function and resistance to viral infections. Nutr Diet. 2008;65(s3):S41-7. [DOI:10.1111/j.1747-0080.2008.00260.x]
47. Harthill M. Review: Micronutrient selenium deficiency influences evolution of some viral infectious diseases. Biol Trace Elem Res. 2011;143(3):1325-36. [DOI:10.1007/s12011-011-8977-1]
48. Beck MA, Esworthy RS, Ho YS, Chu FF. Glutathione peroxidase protects mice from viral‐induced myocarditis. FASEB J. 1998;12(12):1143-9. [DOI:10.1096/fasebj.12.12.1143]
49. Broome CS, McArdle F, Kyle JA, Andrews F, Lowe NM, Hart CA, et al. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am J Clin Nutr. 2004;80(1):154-62. [DOI:10.1093/ajcn/80.1.154]
50. Ekiz C, Agaoglu L, Karakas Z, Gurel N, Yalcin I. The effect of iron deficiency anemia on the function of the immune system. Hematol J. 2005;5(7):579-83. [DOI:10.1038/sj.thj.6200574]
51. Deugnier Y, Battistelli D, Jouanolle H, Guyader D, Gueguen M, Loreal O, et al. Hepatitis B virus infection markers in genetic haemochromatosis: A study of 272 patients. J Hepatol. 1991;13(3):286-90. [DOI:10.1016/0168-8278(91)90070-R]
52. Agoro R, Taleb M, Quesniaux VF, Mura C. Cell iron status influences macrophage polarization. PLoS One. 2018;13(5):e0196921. [DOI:10.1371/journal.pone.0196921]
53. Wang H, Li Z, Niu J, Xu Y, Ma L, Lu A, et al. Antiviral effects of ferric ammonium citrate. Cell Discov. 2018;4:14. [DOI:10.1038/s41421-018-0013-6]
54. Kumar R, Nayak M, Sahoo GC, Pandey K, Sarkar MC, Ansari Y, et al. Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J Infect Chemother. 2019;25(5):325-9. [DOI:10.1016/j.jiac.2018.12.006]
55. Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune System-Working in harmony to reduce the risk of infection. Nutrients. 2020;12(1):236. [DOI:10.3390/nu12010236]
56. Percival SS. Copper and immunity. Am J Clin Nutr. 1998;67(5):1064S-8S. [DOI:10.1093/ajcn/67.5.1064S]
57. Borkow G, Lara HH, Covington CY, Nyamathi A, Gabbay J. Deactivation of human immunodeficiency virus type 1 in medium by copper oxide-containing filters. Antimicrob Agent Chemother. 2008;52(2):518-25. [DOI:10.1128/AAC.00899-07]
58. Warnes SL, Little ZR, Keevil CW. Human coronavirus 229E remains infectious on common touch surface materials. mBio. 2015;6(6). [DOI:10.1128/mBio.01697-15]
59. Bilal MY, Dambaeva S, Kwak-Kim J, Gilman-Sachs A, Beaman KD. A role for iodide and thyroglobulin in modulating the function of human immune cells. Front Immunol. 2017;8:1573. [DOI:10.3389/fimmu.2017.01573]
60. Brown-Grant K. Extrathyroidal iodide concentrating mechanisms. Physiol Rev. 1961;41(1):189-213. [DOI:10.1152/physrev.1961.41.1.189]
61. Fischer AJ, Lennemann NJ, Krishnamurthy S, Pócza P, Durairaj L, Launspach JL, et al. Enhancement of respiratory mucosal antiviral defenses by the oxidation of iodide. Am J Respir Cell Mol Biol. 2011;45(4):874-81. [DOI:10.1165/rcmb.2010-0329OC]
62. Eggers M, Koburger-Janssen T, Eickmann M, Zorn J. In vitro bactericidal and virucidal efficacy of povidone-iodine gargle/mouthwash against respiratory and oral tract pathogens. Infect Dis Ther. 2018;7(2):249-59. [DOI:10.1007/s40121-018-0200-7]
63. Schmoranzer F, Fuchs N, Markolin G, Carlin E, Sakr L, Sommeregger U. Influence of a complex micronutrient supplement on the immune status of elderly individuals. Int J Vitam Nutr Res. 2009;79(5-6):308-18. [DOI:10.1024/0300-9831.79.56.308]
64. Aluisio AR, Perera SM, Yam D, Garbern S, Peters JL, Abel L, et al. Vitamin A supplementation was associated with reduced mortality in patients with Ebola virus disease during the West African outbreak. J Nutr. 2019;149(10):1757-65. [DOI:10.1093/jn/nxz142]
65. Karadima V, Kraniotou C, Bellos G, Tsangaris GT. Drug-micronutrient interactions: Food for thought and thought for action. EPMA J. 2016;7(1):10. [DOI:10.1186/s13167-016-0059-1]
66. Barchitta M, Quattrocchi A, Maugeri A, La Rosa MC, La Mastra C, Sessa L, et al. Antibiotic consumption and resistance during a 3-year period in Sicily, Southern Italy. Int J Environ Res Public Health. 2019;16(13):2253. [DOI:10.3390/ijerph16132253]
67. Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet. 1995;11(4):434-7. [DOI:10.1038/ng1295-434]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author