Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
JMERC
0.4
Volume 15, Issue 1 (2023)                   Iran J War Public Health 2023, 15(1): 11-15 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)


History

How to cite this article
Mohi W, Shemran K, Alsaffar Y. Comparison of Visfatin and Leptin Levels in Type 2 Diabetic Patients with and without Atherosclerosis. Iran J War Public Health 2023; 15 (1) :11-15
URL: http://ijwph.ir/article-1-1178-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Biochemistry Department, College of Medicine, University of Babylon, Hilla, Iraq
Abstract   (971 Views)
Aims: Medical evidence shows that Visfatin and Leptin are related to multiple metabolic Problems, including obesity, type 2 diabetes, and cardiovascular disease. The present study aimed to assess Visfatin and Leptin levels in type 2 diabetic patients with and without atherosclerosis.
Instruments & Methods: This descriptive study was conducted on 30 diabetic patients, 30 patients with diabetes mellitus and atherosclerosis, and 30 seemingly healthy persons (as a control group) in Babylon Province, Iraq, and their serum Visfatin and Leptin levels were assessed by ELISA procedure. The statistical analysis was done with SPSS 21 software.
Findings: In diabetic patients and patients with diabetes and atherosclerosis, the level of Visfatin was significantly higher than in the control group (p=0.0001). There was a significant increase in Leptin level in diabetic patients compared to the control group (p=0.0001), while Leptin level showed a significant decrease in patients with diabetes and atherosclerosis than in the control group (p=0.0001). Also, the mean body mass index in diabetic patients and patients with diabetes and atherosclerosis was significantly higher than in the control group (p=0.0001).
Conclusion: Visfatin serum levels are significantly higher in atherosclerosis patients compared to healthy people, while low Leptin and high Visfatin expression are seen in patients with diabetes.
 
Keywords:

References
1. Bellary S, Kyrou I, Brown JE, Bailey CJ. Type 2 diabetes mellitus in older adults: clinical considerations and management. Nat Rev Endocrinol. 2021;17(9):534-48. [Link] [DOI:10.1038/s41574-021-00512-2]
2. Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377-90. [Link] [DOI:10.1038/s41581-020-0278-5]
3. Mancuso P, Bouchard B. The impact of aging on adipose function and adipokine synthesis. Front Endocrinol. 2019;10:137. [Link] [DOI:10.3389/fendo.2019.00137]
4. Martyniak K, Masternak MM. Changes in adipose tissue cellular composition during obesity and aging as a cause of metabolic dysregulation. Exp Gerontol. 2017;94:59-63. [Link] [DOI:10.1016/j.exger.2016.12.007]
5. De Gaetano A, Gaz C, Palumbo P, Panunzi S. A unifying organ model of pancreatic insulin secretion. PLoS One. 2015;10(11):e0142344. [Link] [DOI:10.1371/journal.pone.0142344]
6. Rout M, Kaur A. Prediction of diabetes based on data mining techniques. Think India J. 2019;22(16):3743-50. [Link]
7. Preethikaa S, Brundha MP. Awareness of diabetes mellitus among general population. Res J Pharm Technol. 2018;11(5):1825-9. [Link] [DOI:10.5958/0974-360X.2018.00339.6]
8. Kang YE, Kim JM, Joung KH, Lee JH, You BR, Choi MJ, et al. The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction. PLoS One. 2016;11(4):e0154003. [Link] [DOI:10.1371/journal.pone.0154003]
9. Zhang Y, Huo Y, He W, Liu S, Li H, Li L. Visfatin is regulated by interleukin6 and affected by the PPARγ pathway in BeWo cells. Mol Med Rep. 2019;19(1):400-6. [Link] [DOI:10.3892/mmr.2018.9671]
10. Rahman A, Babar B, Sebtain A, Gul H, Qasim M, Mustafa SH. Frequency of proteinuria in newly diagnosed diabetic patients. Pakistan J Med Heal Sci. 2022;16(06):935. [Link] [DOI:10.53350/pjmhs22166935]
11. Sun Z, Lei H, Zhang Z. Pre-B cell colony enhancing factor (PBEF), a cytokine with multiple physiological functions. Cytokine Growth Factor Rev. 2013;24(5):433-42. [Link] [DOI:10.1016/j.cytogfr.2013.05.006]
12. Ognjanovic S, Ku TL, Bryant-Greenwood GD. Pre-B-cell colony-enhancing factor is a secreted cytokine-like protein from the human amniotic epithelium. Am J Obstet Gynecol. 2005;193(1):273-82. [Link] [DOI:10.1016/j.ajog.2004.11.003]
13. World Health Organization. Classification of diabetes mellitus [Internet]. Geneva: World Health Organization; 2019 [cited 2022 Feb 23]. Available from: https://www.who.int/publications-detail-redirect/classification-of-diabetes-mellitus [Link]
14. Punthakee Z, Goldenberg R, Katz P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes. 2018;42 Suppl 1:S10-5. [Link] [DOI:10.1016/j.jcjd.2017.10.003]
15. Gonzalez-Abuin N, Pinent M, Casanova-Martí À, Arola L, Blay M, Ardévol A. Procyanidins and their healthy protective effects against type 2 diabetes. Curr Med Chem. 2015;22(1):39-50. [Link] [DOI:10.2174/0929867321666140916115519]
16. Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):45-63. [Link]
17. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275. [Link] [DOI:10.3390/ijms21176275]
18. Abusaib M, Ahmed M, Nwayyir HA, Alidrisi HA, Al-Abbood M, Al-Bayati A, et al. Iraqi experts consensus on the management of type 2 diabetes/prediabetes in adults. Clin Med Insights Endocrinol Diabetes. 2020;13:1179551420942232. [Link] [DOI:10.1177/1179551420942232]
19. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425-32. [Link] [DOI:10.1038/372425a0]
20. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292-5. [Link] [DOI:10.1056/NEJM199602013340503]
21. Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte D. Cerebrospinal fluid leptin levels: Relationship to plasma levels and to adiposity in humans. Nat Med. 1996;2(5):589-93. [Link] [DOI:10.1038/nm0596-589]
22. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404(6778):661-71. [Link] [DOI:10.1038/35007534]
23. Magliano DJ, Sacre JW, Harding JL, Gregg EW, Zimmet PZ, Shaw JE. Young-onset type 2 diabetes mellitus-Implications for morbidity and mortality. Nat Rev Endocrinol. 2020;16(6):321-31. [Link] [DOI:10.1038/s41574-020-0334-z]
24. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995;269(5223):540-3. [Link] [DOI:10.1126/science.7624776]
25. Schwartz MW, Porte D. Diabetes, obesity, and the brain. Science. 2005;307(5708):375-9. [Link] [DOI:10.1126/science.1104344]
26. Meek TH, Morton GJ. Leptin, diabetes, and the brain. Indian J Endocrinol Metab. 2012;16(Suppl 3): S534-42. [Link] [DOI:10.4103/2230-8210.105568]
27. Padhi S, Nayak AK, Behera A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed Pharmacother. 2020;131:110708. [Link] [DOI:10.1016/j.biopha.2020.110708]
28. Targher G, Corey KE, Byrne CD, Roden M. The complex link between NAFLD and type 2 diabetes mellitus-mechanisms and treatments. Nat Rev Gastroenterol Hepatol. 2021;18(9):599-612. [Link] [DOI:10.1038/s41575-021-00448-y]
29. Adeghate E. Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Curr Med Chem. 2008;15(18):1851-62. [Link] [DOI:10.2174/092986708785133004]
30. Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 diabetes mellitus: a review of multi-target drugs. Molecules. 2020;25(8):1987. [Link] [DOI:10.3390/molecules25081987]
31. Mambiya M, Shang M, Wang Y, Li Q, Liu S, Yang L, et al. The play of genes and non-genetic factors on type 2 diabetes. Front public Heal. 2019;7:349. [Link] [DOI:10.3389/fpubh.2019.00349]
32. Tripathy D, Merovci A, Basu R, Abdul-Ghani M, DeFronzo RA. Mild physiologic hyperglycemia induces hepatic insulin resistance in healthy normal glucose-tolerant participants. J Clin Endocrinol Metab. 2019;104(7):2842-50. [Link] [DOI:10.1210/jc.2018-02304]
33. Gillen JB, Estafanos S, Govette A. Exercise-nutrient interactions for improved postprandial glycemic control and insulin sensitivity. Appl Physiol Nutr Metab. 2021;46(8):856-65. [Link] [DOI:10.1139/apnm-2021-0168]

Add your comments about this article : Your username or Email:
CAPTCHA