Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
JMERC
0.4
Volume 16, Issue 3 (2024)                   Iran J War Public Health 2024, 16(3): 279-287 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)

Ethics code: IR.ZUMS.REC.1392.6093


History

How to cite this article
Almousawi N, Al-Hejjaj M. A New Blend of Phenotypic and Genotypic Application as a Zoonosis Escherichia coli Transmission Detector. Iran J War Public Health 2024; 16 (3) :279-287
URL: http://ijwph.ir/article-1-1398-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Microbiology, College of Medicine, University of Basrah, Basrah, Iraq
2- Department of Microbiology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
* Corresponding Author Address: Department of Microbiology, College of Veterinary Medicine, University of Basrah, Qarmat Ali Campus, Basrah, Iraq. (murtakab.alhejjaj@uobasrah.edu.iq)
Abstract   (472 Views)
Aims: Escherichia coli is a Gram-negative bacteria classified into non-pathogenic and pathogenic serotypes. This study aimed to blend phenotypic and genotypic techniques to identify Escherichia coli isolated from patients and dogs.
Materials & Methods: 80 samples were collected from humans and dogs with UTI or diarrhea cultured on MacConkey, EMB, and nutrient agars. The suspected E. coli bacteria was confirmed using a PCR-based molecular method. Two bacterial identification techniques were applied to detect the zoonotic transmission possibility; a phenotypic analyzer using Antibiotic Susceptibility test Patterns and molecular genotypic technique depending on the presence of four exact genes in each isolate.
Findings: All the isolated E. coli were multi-drug and strongly resistant (100%) to Amoxicillin+clavulanic acid, Oxacillin, and Vancomycin. Meanwhile, they were highly susceptible to imipenem (100%). The ASP5 (i) was the dominant pattern among human and animal isolates and the most common shared pattern among the four groups of samples. The results showed that 31 of 50 (62%) isolates have similar ASPs; however, only 16 (53.3%) shared the same phylogenetic groups. Furthermore, the molecular genetic group C is highly prevalent in dog isolates, whereas group E was the commonest among human isolates.
Conclusion: Both methods would be more accurate and better explain bacterial transmission and acquiring new antibiotic-resistance genes.
 
Keywords:

References
1. Ramos S, Silva V, Dapkevicius MLE, Caniça M, Tejedor-Junco MT, Igrejas G, et al. Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals. 2020;10(12):2239. [Link] [DOI:10.3390/ani10122239]
2. Al-Hejjaj MY. Isolation and identification of Escherichia coli from dog's feces and study of the characteristic properties of it's produced antimicrobial agent. Basrah J Vet Res. 2010;9(1):101-11. [Link] [DOI:10.33762/bvetr.2010.55126]
3. Tuttle AR, Trahan ND, Son MS. Growth and maintenance of Escherichia coli laboratory strains. Curr Protoc. 2021;1(1):e20. [Link] [DOI:10.1002/cpz1.20]
4. Hussain A, Ranjan A, Nandanwar N, Babbar A, Jadhav S, Ahmed N. Genotypic and phenotypic profiles of Escherichia coli isolates belonging to clinical sequence type 131 (ST131), clinical non-ST131, and fecal non-ST131 lineages from India. Antimicrob Agents Chemother. 2014;58(12):7240-7249. [Link] [DOI:10.1128/AAC.03320-14]
5. Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, Schwarz S. Antimicrobial resistance in Escherichia coli. Microbiol spectr. 2018;6(4):10-1128. [Link] [DOI:10.1128/microbiolspec.ARBA-0026-2017]
6. Nasrollahian S, Graham JP, Halaji M. A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli. Front Cell Infect Microbiol. 2024;14:1387497. [] [DOI:10.3389/fcimb.2024.1387497]
7. Pais S, Costa M, Barata AR, Rodrigues L, Afonso IM, Almeida G. Evaluation of antimicrobial resistance of different phylogroups of Escherichia coli isolates from feces of breeding and laying hens. Antibiotics. 2022;12(20). [Link] [DOI:10.3390/antibiotics12010020]
8. Canton R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol. 2006;9:466-475. [Link] [DOI:10.1016/j.mib.2006.08.011]
9. Donnenberg MS, Whittam TS. Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. J Clin Investig. 2001;107(5):539-548. [Link] [DOI:10.1172/JCI12404]
10. García A, Fox JG. A one health perspective for defining and deciphering Escherichia coli pathogenic potential in multiple hosts. Comp Med. 2021;71(1):3-45. [Link] [DOI:10.30802/AALAS-CM-20-000054]
11. Al-Hasani HMH, Al-Rubaye DS, Abdelhameed A. The emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) in Iraqi clinical isolates of Escherichia coli. J Popul Ther Clin Pharmacol. 2023;30(5):469-82. [Link] [DOI:10.47750/jptcp.2023.30.05.047]
12. Bayot ML, Bragg BN. Antimicrobial Susceptibility Testing [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 May 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/30969536/ [Link]
13. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol. 2000;66(10):4555-8. [Link] [DOI:10.1128/AEM.66.10.4555-4558.2000]
14. Clermont O, Christenson JK, Denamur E, Gordon DM. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ Microbiol Report. 2013;5(1):58-65. [Link] [DOI:10.1111/1758-2229.12019]
15. Papatheodorou SA, Halvatsiotis P, Houhoula D. A comparison of different DNA extraction methods and molecular techniques for the detection and identification of foodborne pathogens. AIMS Microbiol. 2021;7(3):304-19. [Link] [DOI:10.3934/microbiol.2021019]
16. Shen X, Teo TW, Kong TF, Marcos. A technique for rapid bacterial-density enumeration through membrane filtration and differential pressure measurements. Micromachines. 2022;13(8):1198. [Link] [DOI:10.3390/mi13081198]
17. Tenover FC. Antibiotic Susceptibility Testing. In: Moselio S, editor. Encyclopedia of Microbiology. 3rd Edition. Cambridge: Academic Press; 2009. pp. 67-77. [Link] [DOI:10.1016/B978-012373944-5.00239-X]
18. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 30th Edition. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2020. [Link]
19. Khalid N, Akbar Z, Mustafa N, Akbar J, Saeed S, Saleem Z. Trends in antimicrobial susceptibility patterns of bacterial isolates in Lahore, Pakistan. Front Antibiot. 2023;2:1149408. [Link] [DOI:10.3389/frabi.2023.1149408]
20. Wang RF, Cao WW, Cerniglia CE. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl Environ Microbiol. 1996;62(4):1242-7. [Link] [DOI:10.1128/aem.62.4.1242-1247.1996]
21. Mueller M, Tainter CR. Escherichia coli infection. Florida: StatPearls Publishing; 2023. [Link]
22. Aurich S, Wolf SA, Prenger-Berninghoff E, Thrukonda L, Semmler T, Ewers C. Genotypic characterization of uropathogenic Escherichia coli from companion animals: Predominance of ST372 in dogs and human-related ST73 in cats. Antibiotics. 2023;13(1):38. [Link] [DOI:10.3390/antibiotics13010038]
23. Mounsey O, Wareham K, Hammond A, Findlay J, Gould VC, Morley K, et al. Evidence that faecal carriage of resistant Escherichia coli by 16-week-old dogs in the United Kingdom is associated with raw feeding. One Health. 2022;14:100370. [Link] [DOI:10.1016/j.onehlt.2022.100370]
24. Salgado-Caxito M, Benavides JA, Munita JM, Rivas L, García P, Listoni FJP, et al. Risk factors associated with faecal carriage of extended-spectrum cephalosporin-resistant Escherichia coli among dogs in Southeast Brazil. Prev Vet Med. 2021;190:105316. [Link] [DOI:10.1016/j.prevetmed.2021.105316]
25. Yuan Y, Hu Y, Zhang X, Zhong W, Pan S, Wang L, et al. Characteristics of MDR E. coli strains isolated from pet dogs with clinic diarrhea: A pool of antibiotic resistance genes and virulence-associated genes. PLoS One. 2024;19(2):e0298053. [Link] [DOI:10.1371/journal.pone.0298053]
26. Morgan G, Pinchbeck G, Taymaz E, Chattaway MA, Schmidt V, Williams N. An investigation of the presence and antimicrobial susceptibility of Enterobacteriaceae in raw and cooked kibble diets for dogs in the United Kingdom. Front Microbiol. 2024;14:1301841. [Link] [DOI:10.3389/fmicb.2023.1301841]
27. Groat EF, Williams NJ, Pinchbeck G, Warner B, Simpson A, Schmidt VM. UK dogs eating raw meat diets have higher risk of Salmonella and antimicrobial-resistant Escherichia coli faecal carriage. J Small Anim Pract. 2022;63(6):435-41. [Link] [DOI:10.1111/jsap.13488]
28. Runesvärd E, Wikström C, Fernström LL, Hansson I. Presence of pathogenic bacteria in faeces from dogs fed raw meat-based diets or dry kibble. Vet Rec. 2020;187(9):e71. [Link] [DOI:10.1136/vr.105644]
29. Van Den Bunt G, Fluit AC, Spaninks MP, Timmerman AJ, Geurts Y, Kant A, et al. Faecal carriage, risk factors, acquisition and persistence of ESBL-producing Enterobacteriaceae in dogs and cats and co-carriage with humans belonging to the same household. J Antimicrob Chemother. 2020;75(2):342-50. [Link] [DOI:10.1093/jac/dkz462]
30. Smoglica C, Evangelisti G, Fani C, Marsilio F, Trotta M, Messina F, et al. Antimicrobial resistance profile of bacterial isolates from urinary tract infections in companion animals in Central Italy. Antibiotics (Basel). 2022;11(10):1363. [Link] [DOI:10.3390/antibiotics11101363]
31. Manchester AC, Dogan B, Guo Y, Simpson KW. Escherichia coli-associated granulomatous colitis in dogs treated according to antimicrobial susceptibility profiling. J Vet Intern Med. 2021;35(1):150-61. [Link] [DOI:10.1111/jvim.15995]
32. Garcês A, Lopes R, Silva A, Sampaio F, Duque D, Brilhante-Simões P. Bacterial isolates from urinary tract infection in dogs and cats in Portugal, and their antibiotic susceptibility pattern: A retrospective study of 5 years (2017-2021). Antibiotics (Basel). 2022;11(11):1520. [Link] [DOI:10.3390/antibiotics11111520]
33. Fonseca JD, Mavrides DE, Graham PA, McHugh TD. Results of urinary bacterial cultures and antibiotic susceptibility testing of dogs and cats in the UK. J Small Anim Pract. 2021;62(12):1085-91. [Link] [DOI:10.1111/jsap.13406]
34. Mohammed AJ, Al-Amara SSM, Al-Hejjaj MY. Molecular characterization of blaTEM and blaCTX-M ESBLs genes producing Escherichia coli isolates from urinary tract infections (UTIs) in Al-Basrah province, Iraq. South East Eur J Public Health. 2024;24(S4):389-96. [Link] [DOI:10.70135/seejph.vi.1146]
35. Pokharel P, Dhakal S, Dozois CM. The diversity of Escherichia coli pathotypes and vaccination strategies against this versatile bacterial pathogen. Microorganisms. 2023;11(2):344. [Link] [DOI:10.3390/microorganisms11020344]
36. Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals. 2023;16(11):1615. [Link] [DOI:10.3390/ph16111615]
37. Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. Antimicrobial resistance: A growing serious threat for global public health. Healthcare. 2023;11(13):1946. [Link] [DOI:10.3390/healthcare11131946]
38. Mahizhchi E, Sivakumar D, Jayaraman M. Antimicrobial resistance: Techniques to fight AMR in bacteria-A review. J Pure Appl Microbiol. 2024;18(1):16-28. [Link] [DOI:10.22207/JPAM.18.1.53]
39. Nassar MSM, Hazzah WA, Bakr WMK. Evaluation of antibiotic susceptibility test results: How guilty a laboratory could be?. J Egypt Public Health Assoc. 2019;94(1):4. [Link] [DOI:10.1186/s42506-018-0006-1]
40. Naqid IA, Balatay AA, Hussein NR, Saeed KA, Ahmed HA, Yousif SH. Antibiotic susceptibility pattern of Escherichia coli isolated from various clinical samples in Duhok City, Kurdistan region of Iraq. Int J Infect. 2020;7(3):e103740. [Link] [DOI:10.5812/iji.103740]
41. Sutterlin HA, Zhang S, Silhavy TJ. Accumulation of phosphatidic acid increases vancomycin resistance in Escherichia coli. J Bacteriol. 2014;196(18):3214-20. [Link] [DOI:10.1128/JB.01876-14]
42. Bourne JA, Chong WL, Gordon DM. Genetic structure, antimicrobial resistance and frequency of human associated Escherichia coli sequence types among faecal isolates from healthy dogs and cats living in Canberra, Australia. PLoS One. 2019;14(3):e0212867. [Link] [DOI:10.1371/journal.pone.0212867]
43. Harris M, Fasolino T, Ivankovic D, Davis NJ, Brownlee N. Genetic factors that contribute to antibiotic resistance through intrinsic and acquired bacterial genes in urinary tract infections. Microorganisms. 2023;11(6):1407. [Link] [DOI:10.3390/microorganisms11061407]
44. Tao S, Chen H, Li N, Wang T, Liang W. The spread of antibiotic resistance genes in vivo model. Can J Infect Dis Med Microbiol. 2022;2022:3348695. [Link] [DOI:10.1155/2022/3348695]
45. Domingues CPF, Rebelo JS, Dionisio F, Nogueira T. Multi-drug resistance in bacterial genomes-a comprehensive bioinformatic analysis. Int J Mol Sci. 2023;24(14):11438. [Link] [DOI:10.3390/ijms241411438]
46. Moon BY, Ali MS, Kwon DH, Heo YE, Hwang YJ, Kim JI, et al. Antimicrobial resistance in Escherichia coli isolated from healthy dogs and cats in South Korea, 2020-2022. Antibiotics. 2023;13(1):27. [Link] [DOI:10.3390/antibiotics13010027]
47. Ramos CP, Kamei CYI, Viegas FM, De Melo Barbieri J, Cunha JLR, Hounmanou YMG, et al. Fecal shedding of multidrug resistant Escherichia coli isolates in dogs fed with raw meat-based diets in Brazil. Antibiotics. 2022;11(4):534. [Link] [DOI:10.3390/antibiotics11040534]

Add your comments about this article : Your username or Email:
CAPTCHA