Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
JMERC
0.4
Volume 17, Issue 2 (2025)                   Iran J War Public Health 2025, 17(2): 113-121 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)

Ethics code: IR.UM.REC.1402.276


History

How to cite this article
Allami M, Al-Shammari A, Neshati Z. Generation and Characterization of Purkinje-Like Cells from Differentiated Mouse Bone Marrow Mesenchymal Stem Cells. Iran J War Public Health 2025; 17 (2) :113-121
URL: http://ijwph.ir/article-1-1594-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
2- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
3- “Department of Biology, Faculty of Science” and “Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology,” Ferdowsi University of Mashhad, Mashhad, Iran
* Corresponding Author Address: Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Azadi Square, Azadi Boulevard, Mashhad, Iran. Postal Code: 9177948974 (neshati@um.ac.ir)
Abstract   (393 Views)
Aims: Neurological disorders continue to be challenging to treat due to the limited capacity for neuronal regeneration in the central nervous system. Mesenchymal stem cells present a promising approach for neuron replacement therapies. This study aimed to establish a novel protocol for differentiating mesenchymal stem cells into Purkinje-like cells, given the critical role of Purkinje neurons in motor coordination, cognition, and emotional regulation.
Materials & Methods: Mesenchymal stem cells were isolated from the bone marrow of mice and characterized using specific markers (CD34, CD44, CD45, and CD73). Subsequently, the mesenchymal stem cells were differentiated into neural stem cells, which were characterized through immunocytochemistry and neurosphere formation (Nestin and SOX2). Finally, neural stem cells were differentiated into Purkinje-like cells using specific culture media and identified by morphology and immunocytochemistry (calbindin D28K and IP3R1).
Findings: According to the criteria set by the International Society for Cell and Therapy, isolated mesenchymal stem cells adhered to the flask surface and expressed the CD73 and CD44 markers but did not express the CD34 and CD45 markers. The identity of neural stem cells was confirmed through their morphology, expression of Nestin and SOX2 markers and neurosphere formation. The markers calbindin D28K and IP3R1 were significantly expressed in Purkinje-like cells differentiated from mesenchymal stem cells.
Conclusion: The Purkinje-like cells created in this study can serve as an in vitro model to develop appropriate treatments for diseases caused by the dysfunction of Purkinje cells.
Keywords:

References
1. Chopra R, Shakkottai VG. Translating cerebellar Purkinje neuron physiology to progress in dominantly inherited ataxia. Future Neurol. 2014;9(2):187-96. [Link] [DOI:10.2217/fnl.14.6]
2. Ichimiya T, Okubo Y, Suhara T, Sudo Y. Reduced volume of the cerebellar vermis in neuroleptic-naive schizophrenia. Biol Psychiatry. 2001;49(1):20-7. [Link] [DOI:10.1016/S0006-3223(00)01081-7]
3. Phillips JR, Hewedi DH, Eissa AM, Moustafa AA. The cerebellum and psychiatric disorders. Front Public Health. 2015;3:66. [Link] [DOI:10.3389/fpubh.2015.00066]
4. Blithikioti C, Nuño L, Guell X, Pascual-Diaz S, Gual A, Balcells-Olivero Μ, et al. The cerebellum and psychological trauma: A systematic review of neuroimaging studies. Neurobiol Stress. 2022;17:100429. [Link] [DOI:10.1016/j.ynstr.2022.100429]
5. Schutter DJLG, Honk JV. The cerebellum on the rise in human emotion. Cerebellum. 2005;4(4):290-4. [Link] [DOI:10.1080/14734220500348584]
6. Van Der Heijden ME, Sillitoe RV. Interactions between Purkinje cells and granule cells coordinate the development of functional cerebellar circuits. Neuroscience. 2021;462:4-21. [Link] [DOI:10.1016/j.neuroscience.2020.06.010]
7. Fu L, Zhu L, Huang Y, Lee TD, Forman SJ, Shih CC. Derivation of neural stem cells from mesenchymal stem cells: Evidence for a bipotential stem cell population. Stem Cells Dev. 2008;17(6):1109-22. [Link] [DOI:10.1089/scd.2008.0068]
8. Zhu J, Qiu W, Wei F, Zhang J, Yuan Y, Liu L, et al. Toll-like receptor 4 deficiency in Purkinje neurons drives cerebellar ataxia by impairing the BK channel-mediated after-hyperpolarization and cytosolic calcium homeostasis. Cell Death Dis. 2024;15(8):594. [Link] [DOI:10.1038/s41419-024-06988-w]
9. Yang L, Liu SC, Liu YY, Zhu FQ, Xiong MJ, Hu DX, et al. Therapeutic role of neural stem cells in neurological diseases. Front Bioeng Biotechnol. 2024;12:1329712. [Link] [DOI:10.3389/fbioe.2024.1329712]
10. Zhang LP, Liao JX, Liu YY, Luo HL, Zhang WJ. Potential therapeutic effect of olfactory ensheathing cells in neurological diseases: Neurodegenerative diseases and peripheral nerve injuries. Front Immunol. 2023;14:1280186. [Link] [DOI:10.3389/fimmu.2023.1280186]
11. Wang Q, Zhou L, Guo Y, Liu G, Cheng J, Yu H. Differentiation of human adipose-derived stem cells into neuron-like cells by Radix Angelicae Sinensis. Neural Regen Res. 2013;8(35):3353-8. [Link]
12. Tan L, Liu X, Dou H, Hou Y. Characteristics and regulation of mesenchymal stem cell plasticity by the microenvironment-Specific factors involved in the regulation of MSC plasticity. Genes Dis. 2020;9(2):296-309. [Link] [DOI:10.1016/j.gendis.2020.10.006]
13. Han I, Kwon BS, Park HK, Kim KS. Differentiation potential of mesenchymal stem cells is related to their intrinsic mechanical properties. Int Neurourol J. 2017;21(Suppl 1):S24-31. [Link] [DOI:10.5213/inj.1734856.428]
14. Rehman A, Nigam A, Laino L, Russo D, Todisco C, Esposito G, et al. Mesenchymal stem cells in soft tissue regenerative medicine: A comprehensive review. Medicina. 2023;59(8):1449. [Link] [DOI:10.3390/medicina59081449]
15. Ramli K, Aminath Gasim I, Ahmad AA, Hassan S, Law ZK, Tan GC, et al. Human bone marrow‐derived MSCs spontaneously express specific Schwann cell markers. Cell Biol Int. 2019;43(3):233-52. [Link] [DOI:10.1002/cbin.11067]
16. Abdullah RH, Yaseen NY, Salih SM, Al-Juboory AA, Hassan A, Al-Shammari AM. Induction of mice adult bone marrow mesenchymal stem cells into functional motor neuron-like cells. J Chem Neuroanat. 2016;77:129-42. [Link] [DOI:10.1016/j.jchemneu.2016.07.003]
17. Mohammad MH, Al-Shammari AM, Al-Juboory AA, Yaseen NY. Characterization of neural stemness status through the neurogenesis process for bone marrow mesenchymal stem cells. Stem Cells Cloning. 2016;9:1-15. [Link] [DOI:10.2147/SCCAA.S94545]
18. Mohammad MH, Almzaien AK, Al-Joubory AA, Al-Shammari AM, Ahmed AA, Shaker HK, et al. In vitro isolation and expansion of neural stem cells NSCs. Baghdad Sci J. 2022;20(3):0787. [Link] [DOI:10.21123/bsj.2022.7280]
19. Alexander CJ, Hammer JA. An improved method for differentiating mouse embryonic stem cells into cerebellar Purkinje neurons. Cerebellum. 2019;18(3):406-21. [Link] [DOI:10.1007/s12311-019-1007-0]
20. Valencia-Salgado C, Jacobo-Arreola S, Said-Fernandez S, Soto-Dominguez A, Camacho-Morales A, Martinez-Rodriguez H, et al. Promoting differentiation of human adipose mesenchymal stem cells into oligodendrocyte-like cells and neuron-like cells through coculture on decellularized sciatic nerves. Sci Lett. 2022;1(1):2. [Link]
21. Watson LM, Wong MMK, Vowles J, Cowley SA, Becker EBE. A simplified method for generating Purkinje cells from human-induced pluripotent stem cells. Cerebellum. 2018;17(4):419-27. [Link] [DOI:10.1007/s12311-017-0913-2]
22. Baghaei K, Hashemi SM, Tokhanbigli S, Rad AA, Assadzadeh-Aghdaei H, Sharifian A, et al. Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol Hepatol Bed Bench. 2017;10(3):208-13. [Link]
23. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315-7. [Link] [DOI:10.1080/14653240600855905]
24. Gu P, Qiu FC, Han R, Zhang ZX, Dong C, Zhang LN, et al. Efficient differentiation of neural stem cells induced by the rat bone marrow stromal cells. Int J Clin Exp Med. 2015;8(5):6713-24. [Link]
25. Zhang SC, Wernig M, Duncan ID, Brüstle O, Thomson JA. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol. 2001;19(12):1129-33. [Link] [DOI:10.1038/nbt1201-1129]
26. Suzuki H, Taguchi T, Tanaka H, Kataoka H, Li Z, Muramatsu K, et al. Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes. Biochem Biophys Res Commun. 2004;322(3):918-22. [Link] [DOI:10.1016/j.bbrc.2004.07.201]
27. Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO, et al. Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci. 2004;117(19):4411-22. [Link] [DOI:10.1242/jcs.01307]
28. Divya MS, Roshin GE, Divya TS, Rasheed VA, Santhoshkumar TR, Elizabeth KE, et al. Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res Ther. 2012;3(6):57. [Link] [DOI:10.1186/scrt148]
29. Mareschi K, Novara M, Rustichelli D, Ferrero I, Guido D, Carbone E, et al. Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. Exp Hematol. 2006;34(11):1563-72. [Link] [DOI:10.1016/j.exphem.2006.06.020]
30. Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, et al. SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci. 2004;26(2-4):148-65. [Link] [DOI:10.1159/000082134]
31. Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, et al. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 2010;28(12):2162-71. [Link] [DOI:10.1002/stem.541]
32. Pagin M, Pernebrink M, Giubbolini S, Barone C, Sambruni G, Zhu Y, et al. Sox2 controls neural stem cell self-renewal through a Fos-centered gene regulatory network. Stem Cells. 2021;39(8):1107-19. [Link] [DOI:10.1002/stem.3373]
33. Da Silva Siqueira L, Majolo F, Da Silva APB, Da Costa JC, Marinowic DR. Neurospheres: A potential in vitro model for the study of central nervous system disorders. Mol Biol Rep. 2021;48(4):3649-63. [Link] [DOI:10.1007/s11033-021-06301-4]
34. Songsaad AT, Thairat S, Seemaung P, Thongsuk A, Balit T, Ruangsawasdi N, et al. Characterization of neural stem cells derived from human stem cells from the apical papilla undergoing three-dimensional neurosphere induction. J Appl Oral Sci. 2023;31:e20230209. [Link] [DOI:10.1590/1678-7757-2023-0209]

Add your comments about this article : Your username or Email:
CAPTCHA