1. Wang HH, Portincasa P, Wang DQ. Molecular pathophysiology and physical chemistry of cholesterol gallstones. Front Biosci. 2008;13:401-23. [
Link] [
DOI:10.2741/2688]
2. Aerts R, Penninckx F. The burden of gallstone disease in Europe. Aliment Pharmacol Ther. 2003;18 Suppl 3:49-53. [
Link] [
DOI:10.1046/j.0953-0673.2003.01721.x]
3. Acalovschi M. Epidemiology of gallstone disease. InFALK SYMPOSIUM 2001 (pp. 117-130). Dordrecht; London; Kluwer Academic; 1999. [
Link]
4. Shaffer EA. Epidemiology and risk factors for gallstone disease: has the paradigm changed in the 21st century?. Curr Gastroenterol Rep. 2005;7(2):132-40. [
Link] [
DOI:10.1007/s11894-005-0051-8]
5. Wang Y, Lu J, Wen N, Nie G, Peng D, Xiong X, et al. The role of diet and nutrition related indicators in biliary diseases: an umbrella review of systematic review and meta-analysis. Nutr Metabol. 2022;19(1):51. [
Link] [
DOI:10.1186/s12986-022-00677-1]
6. Jones C, Mawhinney A, Brown R. The true cost of gallstone disease. Ulster Med J. 2012;81(1):10. [
Link] [
DOI:10.53347/rID-17178]
7. Naglova H, Bucova M. HMGB1 and its physiological and pathological roles. Bratisl Lek Listy. 2012;113(3):163-71. [
Link] [
DOI:10.4149/BLL_2012_039]
8. Xue J, Suarez JS, Minaai M, Li S, Gaudino G, Pass HI, et al. HMGB1 as a therapeutic target in disease. J Cell Physiol. 2021;236(5):3406-19. [
Link] [
DOI:10.1002/jcp.30125]
9. Vijayakumar EC, Bhatt LK, Prabhavalkar KS. High mobility group box-1 (HMGB1): A potential target in therapeutics. Curr Drug Targets. 2019;20(14):1474-85. [
Link] [
DOI:10.2174/1389450120666190618125100]
10. Lea JD, Clarke JI, McGuire N, Antoine DJ. Redox-dependent HMGB1 isoforms as pivotal Co-Ordinators of drug-induced liver injury: Mechanistic biomarkers and therapeutic targets. Antioxid Redox Signal. 2016;24(12):652-65. [
Link] [
DOI:10.1089/ars.2015.6406]
11. Amini M, Pakdaman A, Shapoori S, Mosayebi G. High mobility group box-1 (HMGB1) protein as a biomarker for acute cholecystitis. Rep Biochem Mol Biol. 2019;7(2):204-9. [
Link]
12. Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, et al. HMGB1 in health and disease. Molecular aspects of medicine. 2014;40:1-16. [
Link] [
DOI:10.1016/j.mam.2014.05.001]
13. Huang W, Tang Y, Li L. HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine. 2010;51(2):119-26. [
Link] [
DOI:10.1016/j.cyto.2010.02.021]
14. Wang HH, Portincasa P, Wang DQ. Update on the molecular mechanisms underlying the effect of cholecystokinin and cholecystokinin-1 receptor on the formation of cholesterol gallstones. Curr Med Chem. 2019;26(19):3407-23. [
Link] [
DOI:10.2174/0929867324666170619104801]
15. Schjoldager BT. Role of CCK in gallbladder function. Ann N Y Acad Sci. 1994;713:207-18. [
Link] [
DOI:10.1111/j.1749-6632.1994.tb44067.x]
16. Liu Y, Ting J, Zhu W. Role of cholecystokinin in appetite regulation: A review. Octa J Biosci. 2023;11(1). [
Link]
17. Morisset J. The gastrointestinal cholecystokinin receptors in health and diseases. Rocz Akad Med Bialymst. 2005;50:21-36. [
Link]
18. Zhu J, Han TQ, Chen S, Jiang Y, Zhang SD. Gallbladder motor function, plasma cholecystokinin and cholecystokinin receptor of gallbladder in cholesterol stone patients. World J Gastroenterol. 2005;11(11):1685-9. [
Link] [
DOI:10.3748/wjg.v11.i11.1685]
19. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001;104(4):531-43. [
Link] [
DOI:10.1016/S0092-8674(01)00240-9]
20. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. [
Link] [
DOI:10.1006/meth.2001.1262]
21. Otsuki M. Pathophysiological role of cholecystokinin in humans. J Gastroenterol Hepatol. 2000;15:D71-83. [
Link] [
DOI:10.1046/j.1440-1746.2000.02178.x]
22. Guimbaud R, Moreau JA, Bouisson M, Durand S, Escourrou J, Vaysse N, et al. Intraduodenal free fatty acids rather than triglycerides are responsible for the release of CCK in humans. Pancreas. 1997;14(1):76-82. [
Link] [
DOI:10.1097/00006676-199701000-00012]
23. Sonne DP, Hare KJ, Martens P, Rehfeld JF, Holst JJ, Vilsbøll T, et al. Postprandial gut hormone responses and glucose metabolism in cholecystectomized patients. Am J Physiol Gastrointest Liver Physiol. 2013;304(4):G413-9. [
Link] [
DOI:10.1152/ajpgi.00435.2012]
24. Roslyn JJ, DenBesten L, Pitt HA, Kuchenbecker S, Polarek JW. Resident research award. Effects of cholecystokinin on gallbladder stasis and cholesterol gallstone formation. J Surg Res. 1981;30(3):200-4. [
Link] [
DOI:10.1016/0022-4804(81)90148-7]
25. Northfield TC, Kupfer RM, Maudgal DP, Zentler-Munro PL, Meller ST, Garvie NW, et al. Gall-bladder sensitivity to cholecystokinin in patients with gall stones. Br Med J. 1980;280(6208):143-4. [
Link] [
DOI:10.1136/bmj.280.6208.143]
26. Masclee AA, Jansen JB, Driessen WM, Geuskens LM, Lamers CB. Plasma cholecystokinin and gallbladder responses to intraduodenal fat in gallstone patients. Dig Dis Sci. 1989;34(3):353-9. [
Link] [
DOI:10.1007/BF01536255]
27. Ren W, Zhao L, Sun Y, Wang X, Shi X. HMGB1 and Toll-like receptors: Potential therapeutic targets in autoimmune diseases. Mol Med. 2023;29(1):117. [
Link] [
DOI:10.1186/s10020-023-00717-3]
28. Mohammed SH, Al-Dujaili AN, El Katib WA. High mobility group box protein-1 (HMGB1) level in gallstones patients. AIP Conf Proc. 2022;2398(1). [
Link] [
DOI:10.1063/5.0093559]
29. Popovic PJ, DeMarco R, Lotze MT, Winikoff SE, Bartlett DL, Krieg AM, et al. High mobility group B1 protein suppresses the human plasmacytoid dendritic cell response to TLR9 agonists. J Immunol. 2006;177(12):8701-7. [
Link] [
DOI:10.4049/jimmunol.177.12.8701]
30. Al-Kuraishy HM, Al-Gareeb AI, Alkazmi L, Habotta OA, Batiha GE. High-mobility group box 1 (HMGB1) in COVID-19: Extrapolation of dangerous liaisons. Inflammopharmacology. 2022;30(3):811-20. [
Link] [
DOI:10.1007/s10787-022-00988-y]
31. Yang H, Rivera Z, Jube S, Nasu M, Bertino P, Goparaju C, et al. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc Natl Acad Sci U S A. 2010;107(28):12611-6. [
Link] [
DOI:10.1073/pnas.1006542107]
32. Williams JA, Sans MD, Tashiro M, Schäfer C, Bragado MJ, Dabrowski A. Cholecystokinin activates a variety of intracellular signal transduction mechanisms in rodent pancreatic acinar cells. Pharmacol Toxicol. 2002;91(6):297-303. [
Link] [
DOI:10.1034/j.1600-0773.2002.910606.x]
33. Gilyard SN, Hamlin SL, Johnson JO, Herr KD. Imaging review of sickle cell disease for the emergency radiologist. Emerg Radiol. 2021;28(1):153-64. [
Link] [
DOI:10.1007/s10140-020-01828-8]
34. Yang H, Antoine DJ, Andersson U, Tracey KJ. The many faces of HMGB1: Molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol. 2013;93(6):865-73. [
Link] [
DOI:10.1189/jlb.1212662]
35. Daun JM, McCarthy DO. The role of cholecystokinin in interleukin-1-induced anorexia. Physiol Behav. 1993;54(2):237-41. [
Link] [
DOI:10.1016/0031-9384(93)90105-O]
36. Zhong H, Li X, Zhou S, Jiang P, Liu X, Ouyang M, et al. Interplay between RAGE and TLR4 regulates HMGB1-induced inflammation by promoting cell surface expression of RAGE and TLR4. J Immunol. 2020;205(3):767-75. [
Link] [
DOI:10.4049/jimmunol.1900860]
37. Kennedy NS, Campbell FC, Cullen PT, Sutton DG, Millar BW, Cuschieri A. Gallbladder function and fasting enterogastric bile reflux. Nucl Med Commun. 1989;10(3):193-8. [
Link] [
DOI:10.1097/00006231-198903000-00013]
38. Moghetti P, Catellani C, Sartori C, Migazzi M, Cirillo F, Villani M, et al. Serum HMGB1 levels are independently associated with glucose clamp-derived measures of insulin resistance in women with PCOS. J Endocrinol Invest. 2023;46(12):2629-37. [
Link] [
DOI:10.1007/s40618-023-02119-y]
39. Yang K, Cao F, Wang W, Tian Z, Yang L. The relationship between HMGB1 and autophagy in the pathogenesis of diabetes and its complications. Front Endocrinol. 2023;14:1141516. [
Link] [
DOI:10.3389/fendo.2023.1141516]
40. Saia RS, Ribeiro AB, Giusti H. Cholecystokinin modulates the mucosal inflammatory response and prevents the lipopolysaccharide-induced intestinal epithelial barrier dysfunction. Shock. 2020;53(2):242-51. [
Link] [
DOI:10.1097/SHK.0000000000001355]
41. Meng AH, Ling YL, Zhang XP, Zhang JL. Anti-inflammatory effect of cholecystokinin and its signal transduction mechanism in endotoxic shock rat. World J Gastroenterol. 2002;8(4):712-7. [
Link] [
DOI:10.3748/wjg.v8.i4.712]