Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
JMERC
0.4
Volume 17, Issue 1 (2025)                   Iran J War Public Health 2025, 17(1): 51-61 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)


History

How to cite this article
Sedehi S, Norouzi Palangani F, Maleki Z, Banihashemi S. Effect of Conventional and Climb Milling on the Mechanical Properties and Biocompatibility of Pure Titanium; Application of the Williamson-Hall Method. Iran J War Public Health 2025; 17 (1) :51-61
URL: http://ijwph.ir/article-1-1566-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
2- Department of Materials Engineering, Faculty of Materials Engineering, Amir Kabir University of Technology, Tehran, Iran
3- Department of Industrial Engineering, Faculty of Engineering, Gonabad University, Gonabad, Iran
* Corresponding Author Address: Department of Mechanical Engineering, Faculty of Engineering, University of Tehran, 16Azar Street, Tehran, Iran. Postal Code: 1417935840 (mrsedehi@ut.ac.ir)
Abstract   (436 Views)
Aims: This study investigated the effect of conventional and climb milling methods on pure titanium sheets' mechanical properties, corrosion resistance, and microstructure. The goal was to enhance their performance in biomedical applications, particularly for implants exposed to the body’s corrosive environment.
Materials & Methods: Pure titanium sheets (4mm thick) were machined using conventional and climb milling methods without coolant. Mechanical properties, including hardness and wear resistance, were evaluated using Vickers hardness testing and wear testing, respectively. Corrosion behavior was assessed through electrochemical corrosion testing in a simulated body fluid. Microstructural changes were analyzed using X-ray diffraction and Williamson-Hall analysis to determine dislocation density and crystallite size.
Findings: There was a significant increase in hardness for the milled samples, with the conventionally milled sample exhibiting the highest hardness value of 334HV, compared to 292HV for pure titanium. Wear resistance improved, with weight loss reduced to 10mg for climb milling and 11mg for conventional milling, compared to 18mg for pure titanium. The corrosion rate in the conventionally milled sample decreased significantly to 0.0003mm/year, much lower than the 0.07mm/year observed for pure titanium. X-ray diffraction analysis showed a decrease in peak intensity at 35° and 40°, indicating an increase in dislocation density and a reduction in crystallite size from 45nm to 32nm.
Conclusion: Conventional and climb milling methods impact pure titanium sheets' mechanical and corrosion properties, influencing their performance in dental and knee implants.
 
Keywords:

References
1. Liu GL, Zheng JT, Huang CZ, Sun SF, Liu XF, Dai LJ, et al. Coupling effect of micro-textured tools and cooling conditions on the turning performance of aluminum alloy 6061. Adv Manuf. 2023;11(4):663-81. [Link] [DOI:10.1007/s40436-022-00432-y]
2. Zhang S, Shi H, Wang B, Ma C, Li Q. Research on the milling performance of micro-groove ball end mills for titanium alloys. Lubricants. 2024;12(6):204. [Link] [DOI:10.3390/lubricants12060204]
3. Hong SY, Markus I, Jeong WC. New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf. 2001;41(15):2245-60. [Link] [DOI:10.1016/S0890-6955(01)00041-4]
4. Kato H. Milling of medical titanium alloy. J Jpn Soc Precis Eng. 2021;87(3):275-8. [Japanese] [Link] [DOI:10.2493/jjspe.87.275]
5. Outeiro J, Cheng W, Chinesta F, Ammar A. Modelling and optimization of machining of Ti-6Al-4V titanium alloy using machine learning and design of experiments methods. J Manuf Mater Process. 2022;6(3):58. [Link] [DOI:10.3390/jmmp6030058]
6. Jiang G, Yang H, Xiao G, Zhao Z, Wu Y. Titanium alloys surface integrity of belt grinding considering different machining trajectory direction. Front Mater. 2022;9:1052523. [Link] [DOI:10.3389/fmats.2022.1052523]
7. Shokrani A, Al-Samarrai I, Newman ST. Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy. J Manuf Process. 2019;43:229-43. [Link] [DOI:10.1016/j.jmapro.2019.05.006]
8. Narita H. Cutting features between surface roughness in feed direction and machining state of radius end mill against inclined surfaces (in case of contour machining and five-axis machining with constant tilt angle). Int J Autom Technol. 2020;14(1):46-51. [Japanese] [Link] [DOI:10.20965/ijat.2020.p0046]
9. Yujiang L, Tao C. Research on cutting performance in high-speed milling of TC11 titanium alloy using self-propelled rotary milling cutters. Int J Adv Manuf Technol. 2021;116:2125-35. [Link] [DOI:10.1007/s00170-021-07592-4]
10. Kumar MK, Gurudatt B, Reddappa HN, Suresh R. Investigations on the effect of machining parameters on machining force and roughness in micro-milling of titanium Gr5 and Gr12 alloys under dry machining conditions using carbide tool. Mater Today Proc. 2021;47(10):2598-602. [Link] [DOI:10.1016/j.matpr.2021.05.082]
11. Danesh M, Rahimi A. Effect of cutting tool vibration and tool wear on the surface topography of workpiece while machining Ti6Al4V Titanium alloy using laser profilometry. Iran J Manuf Eng. 2020;7(10):34-45. [Persian] [Link]
12. Festas A, Ramos A, Davim JP. Machining of titanium alloys for medical application-a review. Proc Inst Mech Eng Part B J Eng Manuf. 2022;236(4):309-18. [Link] [DOI:10.1177/09544054211028531]
13. Brown M, M'saoubi R, Crawforth P, Mantle A, McGourlay J, Ghadbeigi H. On deformation characterization of machined surfaces and machining-induced white layers in a milled titanium alloy. J Mater Process Technol. 2022;299:117378. [Link] [DOI:10.1016/j.jmatprotec.2021.117378]
14. Daniyan IA, Tlhabadira I, Mpofu K, Muvunzi R. Numerical and experimental analysis of surface roughness during the milling operation of titanium alloy Ti6Al4V. Int J Mech Eng Robotics Res. 2021;10(12):683-93. [Link] [DOI:10.18178/ijmerr.10.12.683-693]
15. Zhu WL, Beaucamp A. Compliant grinding and polishing: A review. Int J Mach Tools Manuf. 2020;158:103634. [Link] [DOI:10.1016/j.ijmachtools.2020.103634]
16. Li C, Hu Y, Zhang F, Geng Y, Meng B. Molecular dynamics simulation of laser-assisted grinding of GaN crystals. Int J Mech Sci. 2023;239:107856. [Link] [DOI:10.1016/j.ijmecsci.2022.107856]
17. Sabarinathan P, Annamalai VE, Xavier Kennedy A. On the use of grains recovered from spent vitrified wheels in resinoid applications. J Mater Cycles Waste Manag. 2020;22(1):197-206. [Link] [DOI:10.1007/s10163-019-00927-0]
18. Li L, Ren X, Feng H, Chen H, Chen X. A novel material removal rate model based on single grain force for robotic belt grinding. J Manuf Process. 2021;68(Pt A):1-12. [Link] [DOI:10.1016/j.jmapro.2021.05.029]
19. Palaniyappan S, Veiravan A, Kumar V, Mathusoothanaperumal Sukanya N, Veeman D. Process optimization and removal of phenol formaldehyde resin coating using mechanical erosion process. Prog Rubber Plast Recycl Technol. 2022;38(2):141-54. [Link] [DOI:10.1177/14777606211066316]
20. Davis R, Singh A, Jackson MJ, Coelho RT, Prakash D, Charalambous CP, et al. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. Int J Adv Manuf Technol. 2022;120(3-4):1473-530. [Link] [DOI:10.1007/s00170-022-08770-8]
21. Nasiri S, Rabiei M, Palevicius A, Janusas G, Vilkauskas A, Nutalapati V, et al. Modified scherrer equation to calculate crystal size by XRD with high accuracy, examples Fe2O3, TiO2 and V2O5. Nano Trends. 2023;3:100015. [Link] [DOI:10.1016/j.nwnano.2023.100015]
22. Holzwarth U, Gibson N. The Scherrer equation versus the 'Debye-Scherrer equation'. Nat Nanotechnol. 2011;6(9):534. [Link] [DOI:10.1038/nnano.2011.145]
23. Chérif I, Dkhil YO, Smaoui S, Elhadef K, Ferhi M, Ammar S. X-ray diffraction analysis by modified Scherrer, Williamson-Hall and size-strain plot methods of ZnO nanocrystals synthesized by oxalate route: A potential antimicrobial candidate against foodborne pathogens. J Clust Sci. 2023;34(1):623-38. [Link] [DOI:10.1007/s10876-022-02248-z]
24. Aftab M, Aftab A, Butt MZ, Ali D, Bashir F, Iqbal SS. Surface hardness of pristine and laser-treated zinc as a function of indentation load and its correlation with crystallite size valued by Williamson-Hall analysis, size-strain plot, Halder-Wagner and Wagner-Aqua models. Mater Chem Phys. 2023;295:127117. [Link] [DOI:10.1016/j.matchemphys.2022.127117]
25. Nath D, Singh F, Das R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles-a comparative study. Mater Chem Phys. 2020;239:122021. [Link] [DOI:10.1016/j.matchemphys.2019.122021]
26. Mendez-Lozano N, Apátiga-Castro M, Soto KM, Manzano-Ramírez A, Zamora-Antuñano M, Gonzalez-Gutierrez C. Effect of temperature on crystallite size of hydroxyapatite powders obtained by wet precipitation process. J Saudi Chem Soc. 2022;26(4):101513. [Link] [DOI:10.1016/j.jscs.2022.101513]
27. Hossain MS, Hasan MM, Mahmud M, Mobarak MB, Ahmed S. Assessment of crystallite size of UV-synthesized hydroxyapatite using different model equations. Chem Pap. 2023;77(1):463-71. [Link] [DOI:10.1007/s11696-022-02501-9]
28. Kumar U, Padalia D, Kumar P, Bhandari P. Estimation of lattice strain and structural study of BaTiO3/PS polymer composite using X-ray peak profile analysis. J Nanoparticle Res. 2023;25(6):124. [Link] [DOI:10.1007/s11051-023-05779-2]
29. Bavil AY, Eghan-Acquah E, Dastgerdi AK, Diamond LE, Barrett R, Walsh HP, et al. Simulated effects of surgical corrections on bone-implant micromotion and implant stresses in paediatric proximal femoral osteotomy. Comput Biol Med. 2025;185:109544. [Link] [DOI:10.1016/j.compbiomed.2024.109544]
30. Ali A, Polepalli L, Chowdhury S, Carr MA, Janorkar AV, Marquart ME, et al. Silver-doped titanium oxide layers for improved photocatalytic activity and antibacterial properties of titanium implants. J Funct Biomater. 2024;15(6):163. [Link] [DOI:10.3390/jfb15060163]
31. Himabindu B, Latha Devi NSMP, Sandhya G, Naveen Reddy T, Saha T, Rajini Kanth B, et al. Structure-based photocatalytic efficiency and optical properties of ZnO nanoparticles modified by annealing including Williamson-Hall microstructural investigation. Mater Sci Eng B. 2023;296:116666. [Link] [DOI:10.1016/j.mseb.2023.116666]
32. Cui YW, Wang L, Zhang LC. Towards load-bearing biomedical titanium-based alloys: From essential requirements to future developments. Prog Mater Sci. 2024;144:101277. [Link] [DOI:10.1016/j.pmatsci.2024.101277]
33. Alam MK, Hossain MS, Bahadur NM, Ahmed S. A comparative study in estimating of crystallite sizes of synthesized and natural hydroxyapatites using Scherrer Method, Williamson-Hall model, Size-Strain Plot and Halder-Wagner Method. J Mol Struct. 2024;1306:137820. [Link] [DOI:10.1016/j.molstruc.2024.137820]
34. Sedehi SM, Maraki MR, Houshyar Eftekhari SD, Fazeli M, Maleki Z, Norouzi Palangani F. Experimental investigation of the effect of reduced graphene oxide addition on the mechanical properties and behavior of Ti/RGO composites in spark plasma sintering process with reference to potential applications in medical implants. Adv Ceram Prog. 2023;9(4):22-31. [Link]
35. Scherrer PJ. Estimation of the size and internal structure of colloidal particles by means of Röntgen. NACHRICHTEN VON DER GESELLSCHAFT DER WISSENSCHAFTEN ZU GÖTTINGEN. 1918;1918:98-100. [German] [Link]
36. Manh DH, Nha TTN, Phong LTH, Nam PH, Thanh TD, Phong PT. Determination of the crystalline size of hexagonal La1-xSrxMnO3 (x=0.3) nanoparticles from X-ray diffraction-a comparative study. RSC Adv. 2023;13(36):25007-17. [Link] [DOI:10.1039/D3RA04018F]
37. Madhavi J. Comparison of average crystallite size by X-ray peak broadening and Williamson-Hall and size-strain plots for VO2+ doped ZnS/CdS composite nanopowder. SN Appl Sci. 2019;1(11):1509. [Link] [DOI:10.1007/s42452-019-1291-9]
38. Ching HA, Choudhury D, Nine MJ, Osman NA. Effects of surface coating on reducing friction and wear of orthopaedic implants. Sci Technol Adv Mater. 2014;15(1):014402. [Link] [DOI:10.1088/1468-6996/15/1/014402]
39. Alla RK, Ginjupalli K, Upadhya N, Shammas M, Ravi RK, Sekhar R. Surface roughness of implants: A review. Trends Biomater Artif Organs. 2011;25(3):112-8. [Link]
40. Soares PB, Nunes SA, Franco SD, Pires RR, Zanetta-Barbosa D, Soares CJ. Measurement of elastic modulus and Vickers hardness of surround bone implant using dynamic microindentation-parameters definition. Braz Dent J. 2014;25(5):385-90. [Link] [DOI:10.1590/0103-6440201300169]
41. Silva AM, Matos JDM, Tribst JPM, Lopes GRS, Martinelli CSM, Borges ALS, et al. Effect of titanium hardness on the integrity and stress concentration of external hexagon dental implants. Int J Odontostomatol. 2021;15(4):1053-9. [Link] [DOI:10.4067/S0718-381X2021000401053]
42. Arnold JS, Bartley MH, Tont SA, Jenkins DP. Skeletal changes in aging and disease. Clin Orthop Relat Res. 1966;49:17-38. [Link] [DOI:10.1097/00003086-196611000-00002]
43. Herbster M, Garke B, Harnisch K, Michael O, Lieb A, Betke U, et al. Effects of Cr addition on Ti implant alloys (Ti-Cr/Ti-Al-V-Cr) to enhance corrosion and wear resistance. J Mech Behav Biomed Mater. 2025;164:106899. [Link] [DOI:10.1016/j.jmbbm.2025.106899]
44. Yang S, Hu Z, Xu J, Sun X, Wang Y. Surface microstructures and corrosion behavior of Zircaloy-4 induced by the composite action of micro electrical discharge machining and high current pulsed electron beam. Vacuum. 2025;234:114050. [Link] [DOI:10.1016/j.vacuum.2025.114050]
45. Yang J, Wang Y, Yang Y, Liu Y, Zhang W. Fabrication of micro holes with confined pitting corrosion by laser and electrochemical machining: Pitting corrosion formation mechanisms and protection method. J Mater Process Technol. 2025;335:118677. [Link] [DOI:10.1016/j.jmatprotec.2024.118677]
46. Goidanich S, Lazzari L, Ormellese M. AC corrosion-Part 1: Effects on overpotentials of anodic and cathodic processes. Corros Sci. 2010;52(2):491-7. [Link] [DOI:10.1016/j.corsci.2009.10.005]
47. Driver R, Meakins RJ. Tafel slopes and chemical structure of inhibitors of the acid corrosion of steel. Br Corros J. 1974;9(4):233-7. [Link] [DOI:10.1179/000705974798321224]
48. Yazar KU, Mishra S, Karmakar A, Bhattacharjee A, Suwas S. On the temperature sensitivity of dwell fatigue of a near alpha titanium alloy: Role of strain hardening and strain rate sensitivity. Metall Mater Trans A. 2020;51(10):5036-42. [Link] [DOI:10.1007/s11661-020-05914-x]
49. Antil P, Kumar Antil S, Prakash C, Krolczyk G, Pruncu C. Multi-objective optimization of drilling parameters for orthopaedic implants. Meas Control. 2020;53(9-10):1902-10. [Link] [DOI:10.1177/0020294020947126]
50. Singh B, Saxena KK, Dagwa IM, Singhal P, Malik V. Optimization of machining characteristics of titanium-based biomaterials: Approach to optimize surface integrity for implants applications. Surf Rev Lett. 2023;1:2340008. [Link] [DOI:10.1142/S0218625X23400085]

Add your comments about this article : Your username or Email:
CAPTCHA