Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
JMERC
0.4
Volume 17, Issue 1 (2025)                   Iran J War Public Health 2025, 17(1): 1-7 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)


History

How to cite this article
Sedehi S, Sharifi S, Dastmard A, Darroudi N, Dehghan Niri M. Enhanced Titanium Structures via Spark Plasma Sintering and Shear Extrusion. Iran J War Public Health 2025; 17 (1) :1-7
URL: http://ijwph.ir/article-1-1535-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
2- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
3- Department of Biomedical Engineering, Faculty of Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
4- Department of Industrial Engineering, Faculty of Engineering, Gonabad University, Gonabad, Iran
* Corresponding Author Address: Department of Mechanical Engineering, Faculty of Engineering, University of Tehran, 16Azar Street, Tehran, Iran. Postal Code: 1417935840 (mrsedehi@ut.ac.ir)
Abstract   (637 Views)

Aims: This study aimed to investigate the effects of simple shear extrusion following spark plasma sintering on the microstructural and mechanical properties of commercially pure titanium for advanced biomedical applications.
Materials & Methods: In this experimental study, commercially pure titanium samples were first fabricated using spark plasma sintering at 900°C and were subsequently subjected to simple shear extrusion at room temperature. Microstructural analyses were performed using Williamson-Hall XRD calculations to evaluate grain size. Mechanical properties, including hardness and tensile strength, were assessed to determine the influence of the simple shear extrusion process.
Findings: The grain size decreased significantly from 60.2 nm in the spark plasma sintering-processed sample (first sample) to 27.9 nm in the simple shear extrusion-processed sample (second sample). Hardness increased from 373.2 HV in the first sample to 411 HV in the second sample, compared to the base titanium hardness of 315 HV. These findings demonstrate the simple shear extrusion process’s ability to refine the microstructure and enhance mechanical properties.
Conclusion: The fusion of spark plasma sintering and simple shear extrusion not only enhances the mechanical integrity and biocompatibility of titanium components but also establishes a solid foundation for developing next-generation medical implants.
 

Keywords:

References
1. Marin E, Lanzutti A. Biomedical applications of titanium alloys: A comprehensive review. Materials. 2024;17(1):114. [Link] [DOI:10.3390/ma17010114]
2. Zaid MB, O'Donnell RJ, Potter BK, Forsberg JA. Orthopaedic osseointegration: State of the art. J Am Acad Orthop Surg. 2019;27(22):e977-85. [Link] [DOI:10.5435/JAAOS-D-19-00016]
3. Marin E, Fedrizzi L, Zagra L. Porous metallic structures for orthopaedic applications: A short review of materials and technologies. Eur Orthop Traumatol. 2010;1:103-9. [Link] [DOI:10.1007/s12570-010-0020-z]
4. Raimondi MT, Pietrabissa R. The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating. Biomaterials. 2000;21(9):907-13. [Link] [DOI:10.1016/S0142-9612(99)00246-X]
5. Lalor PA, Revell PA, Gray AB, Wright S, Railton GT, Freeman MA. Sensitivity to titanium. A cause of implant failure?. J Bone Joint Surg Br. 1991;73(1):25-8. [Link] [DOI:10.1302/0301-620X.73B1.1991768]
6. Jacobs JJ, Silverton C, Hallab NJ, Skipor AK, Patterson L, Black J, et al. Metal release and excretion from cementless titanium alloy total knee replacements. Clin Orthop Relat Res. 1999;(358):173-80. [Link] [DOI:10.1097/00003086-199901000-00021]
7. Jacobs Z, Schipani R, Pastrama M, Ahmadi SM, Sajadi B. Evaluation of biocompatibility and osseointegration of multi‐component TiAl6V4 titanium alloy implants. J Orthop Res. 2025;43(1):139-52. [Link] [DOI:10.1002/jor.25974]
8. Branemark R, Branemark PI, Rydevik B, Myers RR. Osseointegration in skeletal reconstruction and rehabilitation: A review. J Rehabil Res Dev. 2001;38(2):175-82. [Link]
9. Yang S, Jiang W, Ma X, Wang Z, Sah RL, Wang J, et al. Nanoscale morphologies on the surface of 3D-printed titanium implants for improved osseointegration: A systematic review of the literature. Int J Nanomed. 2023;18:4171-91. [Link] [DOI:10.2147/IJN.S409033]
10. Pałka K, Pokrowiecki R. Porous titanium implants: A review. Adv Eng Mater. 2018;20(5):1700648. [Link] [DOI:10.1002/adem.201700648]
11. Niu J, Guo Y, Li K, Liu W, Dan Z, Sun Z, et al. Improved mechanical, bio-corrosion properties and in vitro cell responses of Ti-Fe alloys as candidate dental implants. Mater Sci Eng C. 2021;122:111917. [Link] [DOI:10.1016/j.msec.2021.111917]
12. Jin W, Chu PK. Orthopedic implants. Encycl Biomed Eng. 2019;1(3):425-39. [Link] [DOI:10.1016/B978-0-12-801238-3.10999-7]
13. Wang K. The biological effects of corrosion products from titanium implants. BioMetals; 2019. [Link]
14. Rominiyi AL, Mashinini PM, Rominiyi OL. Microstructure, phase evolution and mechanical properties of nickel-silicon carbide reinforced Ti6Al4V alloy processed by pulsed electric current sintering. Ceram Int. 2024;50(18):33926-36. [Link] [DOI:10.1016/j.ceramint.2024.06.212]
15. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zechetbauer MJ, Zhu YT. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 2006;58:33-9. [Link] [DOI:10.1007/s11837-006-0213-7]
16. Estrin Y, Vinogradov A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013;61(3):782-817. [Link] [DOI:10.1016/j.actamat.2012.10.038]
17. Shi X, Wang X, Zhang J, Du H. High-temperature tribological behavior of the Al/Mg/Cu multilayered composite produced by the severe plastic deformation. Tribol Int. 2024;199:110037. [Link] [DOI:10.1016/j.triboint.2024.110037]
18. Suwas S, Beausir B, Tóth LS, Fundenberger JJ, Gottstein G. Texture evolution in commercially pure titanium after warm equal channel angular extrusion. Acta Mater. 2011;59(3):1121-33. [Link] [DOI:10.1016/j.actamat.2010.10.045]
19. Sedehi SM, Khosravi M, Yaghoubinezhad Y. Mechanical properties and microstructures of reduced graphene oxide reinforced titanium matrix composites produced by spark plasma sintering and simple shear extrusion. Ceram Int. 2021;47(23):33180-90. [Link] [DOI:10.1016/j.ceramint.2021.08.219]
20. Alam MK, Hossain MS, Bahadur NM, Ahmed S. A comparative study in estimating of crystallite sizes of synthesized and natural hydroxyapatites using Scherrer Method, Williamson-Hall model, Size-Strain Plot and Halder-Wagner Method. J Mol Struct. 2024;1306:137820. [Link] [DOI:10.1016/j.molstruc.2024.137820]
21. Izi A, Honarpisheh M, Ahmadi F. Investigation of mechanical properties and residual stress in the combined simple shear extrusion-forward extrusion (CSSE-FE) process of 1050 aluminum alloy. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications; 2025. [Link] [DOI:10.1177/14644207241308975]
22. Sotniczuk A, Chromiński W, Adamczyk-Cieślak B, Pisarek M, Garbacz H. Corrosion behaviour of biomedical Ti under simulated inflammation: Exploring the relevance of grain refinement and crystallographic texture. Corros Sci. 2022;200:110238. [Link] [DOI:10.1016/j.corsci.2022.110238]
23. Salas L, Chávez J, Jimenez O, Flores-Jimenez M, Alvarado-Hernandez F, Olmos L, et al. Tribocorrosion and corrosion behavior of quaternary Ti-24Nb-xZr-ySn alloys in SBF. Mater Lett. 2021;283:128903. [Link] [DOI:10.1016/j.matlet.2020.128903]
24. Topolski K, Pachla W, Garbacz H. Progress in hydrostatic extrusion of titanium. J Mater Sci. 2013;48:4543-8. [Link] [DOI:10.1007/s10853-012-7086-7]
25. Thomas BM, Derguti F, Jackson M. Continuous extrusion of a commercially pure titanium powder via the Conform process. Mater Sci Technol. 2017;33(7):899-903. [Link] [DOI:10.1080/02670836.2016.1245256]

Add your comments about this article : Your username or Email:
CAPTCHA