1. United Nations Security General. Report of the mission dispatched by the secretary-general to investigate allegations of the use of chemical weapons in the conflict between the Islamic Republic of Iran and Iraq. New York: United Nations; 1988. [
Link]
2. Prentiss AM. Vesicant agents. In: Chemicals in warfare: A treatise on chemical warfare. London: McGraw-Hill; 1937. p. 177-300. [
Link]
3. Ghazanfari T, Faghihzadeh S, Aragizadeh H, Soroush MR, Yaraee R, Mohammad Hassan Z, et al. Sardasht-Iran cohort study of chemical warfare victims: Design and methods. Arch Iran Med. 2009;12(1):5-14. [
Link]
4. Marrs TC, Maynard Rl, Sidell FR. Chemical warfare against: Toxicology and treatment. Hoboken: John Wiley and Sons; 2007. [
Link] [
DOI:10.1002/9780470060032]
5. Somani SM. Chemical warfare against. San Diego: Academic Press; 1992. [
Link]
6. Balali-Mood M, Balali-Mood B. Sulphur mustard poisoning and its complications in Iranian veterans. Iran J Med Sci. 2009;34(3):155-71. [
Link]
7. Dadpey M, Ghahari L. Respiratory complication of Mustard gas in Iraq-Iran war victims living in Kermanshah. Ann Mil Health Sci Res. 2007;5(3):1331-5. [Persian] [
Link]
8. Balali Mood M, Hefazati M. Acute poisoning with sulfur mustard gas. J Birjand Univ Med Sci. 2004:11(2):9-15. [Persian] [
Link]
9. Khateri S, Ghanei M, Keshavarz S, Soroush M, Haines D. Incidence of lung, eye and skin lesions on late complications in 34,000 Iranian with wartime exposure to mustard agent. J Occup Environ Med. 2003;45(11):1136-43. [
Link] [
DOI:10.1097/01.jom.0000094993.20914.d1]
10. Balali-Mood M, Hefazi M, Mahmoudi M, Jalali E, Attaran D, Maleki M, et al. Long-term complications of Sulphur mustard poisoning in severely intoxicated Iranian veterans. Fundam Clin Pharmacol. 2005;19(6):713-21. [
Link] [
DOI:10.1111/j.1472-8206.2005.00364.x]
11. Balali-Mood M, Navaeian A. Clinical and paraclinical findings in 233 patients with sulfur mustard poisoning. Proceedings of the Second World Congress on New Compounds in Biological and Chemical Warfare Ghent. Ghent: Ghent University; 1986. [
Link]
12. Kavehie B, Faghihzadeh S, Eskandari F, Kazemnejad S, Ghazanfari T, Soroosh MR. Studying the surrogate validity of respiratory indexes in predicting the respiratory illnesses in wounded people exposed to sulfur mustard. J Arak Univ Med Sci. 2011;13(4):75-82. [Persian] [
Link]
13. Erturan AM, Karaduman G, Durmaz H. Machine learning-based approach for efficient prediction of toxicity of chemical gases using feature selection. J Hazard Mater. 2023;455:131616. [
Link] [
DOI:10.1016/j.jhazmat.2023.131616]
14. Zeren J, Hu P, Xu H, Wang Q. Machine learning and deep learning in chemical health and safety: A systematic review of techniques and applications. ACS Chem Health Saf. 2020;27(6):316-34. [
Link] [
DOI:10.1021/acs.chas.0c00075]
15. Wu Y, Wang G. Machine learning based toxicity prediction: From chemical structural description to transcriptome analysis. Int J Mol Sci. 2018;19(8):2358. [
Link] [
DOI:10.3390/ijms19082358]
16. Zhang SQ, Xu LC, Li SW, Oliveira JCA, Li X, Ackermann L, et al. Bridging chemical knowledge and machine learning for performance prediction of organic synthesis. Chemistry. 2023;29(6):e202202834. [
Link] [
DOI:10.1002/chem.202380662]
17. Cova TFGG, Pais AACC. Deep learning for deep chemistry: Optimizing the prediction of chemical patterns. Front Chem. 2019;7:809. [
Link] [
DOI:10.3389/fchem.2019.00809]
18. Russell S, Norvig P. Artificial fintelligence: A modern approach. 3rd ed. London: Pearson; 2009. [
Link]
19. Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006. [
Link]
20. Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science. 2015;349(6245):255-60. [
Link] [
DOI:10.1126/science.aaa8415]
21. Mandel M, Gibson WS. Clinical manifestations and treatment of gas poisoning. JAMA. 1917;LXIX(23):1970-1. [
Link] [
DOI:10.1001/jama.1917.25910500001015]
22. Hafezi M, Attaran D, Mahmoudi M, Balali-Mood M. Late respiratory complications of mustard gas poisoning in Iranian veterans. Inhal Toxicol. 2005;17(11):587-92. [
Link] [
DOI:10.1080/08958370591000591]
23. Emad A, Rezaian GR. The diversity of the sulfur mustard gas inhalation or respiratory system 10 years after a single, heavy exposure: Analysis of 197 cases. Chest. 1997;112(3):734-8. [
Link] [
DOI:10.1378/chest.112.3.734]
24. Sabahi H, Vali M, Shafie D. In-hospital mortality prediction model of heart failure patients using imbalanced registry data: A machine learning approach. SCIENTIA IRANICA. 2023. [
Link] [
DOI:10.24200/sci.2023.61637.7412]
25. Evison D, Hinsley D, Rice P. Chemical weapons. BMJ. 2002;324(7333):332-5. [
Link] [
DOI:10.1136/bmj.324.7333.332]
26. Bullman T, Kang H. A fifty years mortality follow-up study of veterans exposed to low level chemical warfare agent, mustard Gas. Ann Epidemiol. 2000;10(5):333-8. [
Link] [
DOI:10.1016/S1047-2797(00)00060-0]
27. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning: With applications in R. New York: Springer; 2013. [
Link] [
DOI:10.1007/978-1-4614-7138-7]
28. Murphy KP. Machine learning: A probabilistic perspective (adaptive computation and machine learning series). Cambridge: The MIT Press; 2012. [
Link]