Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
JMERC
0.4
Volume 17, Issue 1 (2025)                   Iran J War Public Health 2025, 17(1): 43-49 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)


History

How to cite this article
Dhiya A, Haji Ghasem Kashani M, Osamah N, Salehi M, Manouchehri B, Elaheh A. Effect of Osteogenic Genes Expression on Bone Tissue Treatment; an Engineered Animal Model. Iran J War Public Health 2025; 17 (1) :43-49
URL: http://ijwph.ir/article-1-1524-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Pharmaceutics, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq, dhiya@alzahraa.edu.iq
2- Department of Cellular and Molecular Biology, Faculty of Biology and Institute of Biological Sciences, Damghan University, Damghan, Iran
3- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
4- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
5- Department of Biology, Faculty of Optometry, Indiana University of Bloomington, Indiana, United States of America
6- Department of Cellular and Molecular Biology, Faculty of Biology, Damghan University, Damghan, Iran
* Corresponding Author Address: Department of Cellular and Molecular Biology, School of Biology and Institute of Biological Sciences, Damghan University, Cheshmeh Ali Street, Damghan, Iran. (kashani@du.ac.ir)
Abstract   (392 Views)

Aims: Scaffolds are replaced with newly formed bone over time through cell adhesion, proliferation, and differentiation. Additionally, Hesperadin reduces osteoclast activity, preventing the absorption of trabecular bone. This research aimed to investigate the therapeutic effects of chitosan scaffolds enriched with various concentrations of hesperidin flavonoid on femur fractures by evaluating the expression of Runx2 and OCN genes.

Materials & Methods: The experimental study employed 36 male Wistar rats, each weighing between 220 and 260g, who were randomly assigned to one of six groups following the establishment of a fracture line in the right leg; control (femur fracture model) and treatment groups with scaffolds loaded with different percentages of hesperidin (0, 0.01, 0.1, 1, and 10% by polymer weight). After 2 months, the bones were extracted and studied using histological (Trichromasson stain) and real-time PCR methods.

Findings: Compared to the control group, the evaluation of Real-time PCR results demonstrated a substantial increase in Runx2 gene expression in Hesp1%. Also, there was a significant decrease in the expression of this gene in the 0% and 10% groups compared to the 1% group. However, no significant difference was observed between the groups in the expression of the OCN gene. Histological evaluation of the Hesp1% group showed new bone replacement and collagen matrix, compared to the control and the other treated groups.

Conclusion: A chitosan scaffold containing 1% hesperidin has a potential role in bone lesion repair and is a suitable therapeutic strategy in tissue engineering.

Keywords:

References
1. Reichert JC, Wullschleger ME, Cipitria A, Lienau J, Cheng TK, Schütz MA, et al. Custom-made composite scaffolds for segmental defect repair in long bones. Int Orthop. 2011;35(8):1229-36. [Link] [DOI:10.1007/s00264-010-1146-x]
2. Saravanan S, Leena R, Selvamurugan N. Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol. 2016;93(Pt B):1354-65. [Link] [DOI:10.1016/j.ijbiomac.2016.01.112]
3. Dhivya S, Keshav Narayan A, Logith Kumar R, Viji Chandran S, Vairamani M, Selvamurugan N. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering. Cell Prolif. 2018;51(1):e12408. [Link] [DOI:10.1111/cpr.12408]
4. Bianchera A, Salomi E, Pezzanera M, Ruwet E, Bettini R, Elviri L. Chitosan hydrogels for chondroitin sulphate controlled release: An analytical characterization. J Anal Methods Chem. 2014;2014(1):808703. [Link] [DOI:10.1155/2014/808703]
5. He Y, Dong Y, Cui F, Chen X, Lin R. Ectopic osteogenesis and scaffold biodegradation of nano-hydroxyapatite-chitosan in a rat model. PLoS One. 2015;10(8):e0135366. [Link] [DOI:10.1371/journal.pone.0135366]
6. Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, Saldaña-Koppel DA, Quiñones-Olvera LF. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int. 2015;2015(1):821279. [Link] [DOI:10.1155/2015/821279]
7. Muxika A, Etxabide A, Uranga J, Guerrero P, De La Caba K. Chitosan as a bioactive polymer: Processing, properties and applications. Int J Biol Macromol. 2017;105(Pt 2):1358-68. [Link] [DOI:10.1016/j.ijbiomac.2017.07.087]
8. Costa-Pinto AR, Reis RL, Neves NM. Scaffolds based bone tissue engineering: The role of chitosan. Tissue Eng Part B Rev. 2011;17(5):331-47. [Link] [DOI:10.1089/ten.teb.2010.0704]
9. Furuike T, Komoto D, Hashimoto H, Tamura H. Preparation of chitosan hydrogel and its solubility in organic acids. Int J Biol Macromol. 2017;104(Pt B):1620-5. [Link] [DOI:10.1016/j.ijbiomac.2017.02.099]
10. Austermann K, Baecker N, Stehle P, Heer M. Putative effects of nutritive polyphenols on bone metabolism in vivo-evidence from human studies. Nutrients. 2019;11(4):871. [Link] [DOI:10.3390/nu11040871]
11. Martin BR, McCabe GP, McCabe L, Jackson GS, Horcajada MN, Offord-Cavin E, et al. Effect of hesperidin with and without a calcium (Calcilock) supplement on bone health in postmenopausal women. J Clin Endocrinol Metab. 2016;101(3):923-7. [Link] [DOI:10.1210/jc.2015-3767]
12. Chiba H, Uehara M, Wu J, Wang X, Masuyama R, Suzuki K, et al. Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. J Nutr. 2003;133(6):1892-7. [Link] [DOI:10.1093/jn/133.6.1892]
13. Torre E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. Phytochem Rev. 2017;16(6):1183-226. [Link] [DOI:10.1007/s11101-017-9529-x]
14. Altememy D, Kashani MHG, Fateme A, Khosravian P. New method to induce neurotrophin gene expression in human adipose-derived stem cells in vitro. J Adv Pharm Technol Res. 2024;15(3):214-9. [Link] [DOI:10.4103/JAPTR.JAPTR_390_23]
15. Akman AC, Seda Tığlı R, Gümüşderelioğlu M, Nohutcu RM. Bone morphogenetic protein‐6‐loaded chitosan scaffolds enhance the osteoblastic characteristics of MC3T3‐E1 cells. Artif Organs. 2010;34(1):65-74. [Link] [DOI:10.1111/j.1525-1594.2009.00798.x]
16. Maji K, Dasgupta S, Pramanik K, Bissoyi A. Preparation and evaluation of gelatin‐chitosan‐nanobioglass 3D porous scaffold for bone tissue engineering. Int J Biomater. 2016;2016(1):9825659. [Link] [DOI:10.1155/2016/9825659]
17. Altememy D, Ghasem Kashani MH, Wenas O. Sinusoidal electromagnetic field decreases osteogenic differentiation of rat bone marrow mesenchymal stem cells. Int J Appl Pharm. 2024;16(3). [Link] [DOI:10.22159/ijap.2024v16i3.50382]
18. Wang F, Pang Y, Chen G, Wang W, Chen Z. Enhanced physical and biological properties of chitosan scaffold by silk proteins cross-linking. Carbohydr Polym. 2020;229:115529. [Link] [DOI:10.1016/j.carbpol.2019.115529]
19. Aguilar A, Zein N, Harmouch E, Hafdi B, Bornert F, Offner D, et al. Application of chitosan in bone and dental engineering. Molecules. 2019;24(16):3009. [Link] [DOI:10.3390/molecules24163009]
20. Levengood SKL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B. 2014;2(21):3161-84. [Link] [DOI:10.1039/c4tb00027g]
21. Horcajada MN, Habauzit V, Trzeciakiewicz A, Morand C, Gil-Izquierdo A, Mardon J, et al. Hesperidin inhibits ovariectomized-induced osteopenia and shows differential effects on bone mass and strength in young and adult intact rats. J Appl Physiol. 2008;104(3):648-54. [Link] [DOI:10.1152/japplphysiol.00441.2007]
22. Altememy D, Kashani MHG, Khosravian P. Selegiline induced differentiation of rat bone marrow mesenchymal stem cells to dopaminergic neurons in vitro. Pharmacia. 2023;70(4):959-65. [Link] [DOI:10.3897/pharmacia.70.e107909]
23. Habauzit V, Sacco SM, Gil-Izquierdo A, Trzeciakiewicz A, Morand C, Barron D, et al. Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone. 2011;49(5):1108-16. [Link] [DOI:10.1016/j.bone.2011.07.030]
24. Xue D, Chen E, Zhang W, Gao X, Wang S, Zheng Q, et al. The role of hesperetin on osteogenesis of human mesenchymal stem cells and its function in bone regeneration. Oncotarget. 2017;8(13):21031-43. [Link] [DOI:10.18632/oncotarget.15473]
25. Xu J, Li Z, Hou Y, Fang W. Potential mechanisms underlying the Runx2 induced osteogenesis of bone marrow mesenchymal stem cells. Am J Transl Res. 2015;7(12):2527-35. [Link]
26. Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci. 2019;20(7):1694. [Link] [DOI:10.3390/ijms20071694]
27. Abe Y, Chiba M, Yaklai S, Pechayco RS, Suzuki H, Takahashi T. Increase in bone metabolic markers and circulating osteoblast-lineage cells after orthognathic surgery. Sci Rep. 2019;9(1):20106. [Link] [DOI:10.1038/s41598-019-56484-x]
28. Liu W, Toyosawa S, Furuichi T, Kanatani N, Yoshida C, Liu Y, et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol. 2001;155(1):157-66. [Link] [DOI:10.1083/jcb.200105052]
29. Galindo M, Kahler RA, Teplyuk NM, Stein JL, Lian JB, Stein GS, et al. Cell cycle related modulations in Runx2 protein levels are independent of lymphocyte enhancer-binding factor 1 (Lef1) in proliferating osteoblasts. J Mol Histol. 2007;38(5):501-6. [Link] [DOI:10.1007/s10735-007-9143-0]
30. Zhao Z, Zhao M, Xiao G, Franceschi RT. Gene transfer of the Runx2 transcription factor enhances osteogenic activity of bone marrow stromal cells in vitro and in vivo. Mol Ther. 2005;12(2):247-53. [Link] [DOI:10.1016/j.ymthe.2005.03.009]
31. Yang L, Takai H, Utsunomiya T, Li X, Li Z, Wang Z, et al. Kaempferol stimulates bone sialoprotein gene transcription and new bone formation. J Cell Biochem. 2010;110(6):1342-55. [Link] [DOI:10.1002/jcb.22649]
32. Zhong D, Wang CG, Yin K, Liao Q, Zhou X, Liu AS, et al. In vivo ossification of a scaffold combining β‑tricalcium phosphate and platelet‑rich plasma. Exp Ther Med. 2014;8(5):1381-8. [Link] [DOI:10.3892/etm.2014.1969]
33. Bruderer M, Richards R, Alini M, Stoddart MJ. Role and regulation of RUNX2 in osteogenesis. Eur Cell Mater. 2014;28(1):269-86. [Link] [DOI:10.22203/eCM.v028a19]

Add your comments about this article : Your username or Email:
CAPTCHA