Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
JMERC
0.4
Volume 16, Issue 1 (2024)                   Iran J War Public Health 2024, 16(1): 81-89 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)


History

How to cite this article
Awadh M, Gany S, Ghaleb R, Ameen A. Phytochemical Screening, in Vitro Antileishmanial Activity of Conyza Canadensis Extract by Neopterin. Iran J War Public Health 2024; 16 (1) :81-89
URL: http://ijwph.ir/article-1-1432-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Pharmacology and Therapeutics, College of Medicine, University of Kufa, Kufa, Iraq
2- Department of Anatomy and Histology, College of Medicine, University of Babylon, Iraq
3- Department of Histology, AL-Imam Al-Sadiq Hospetal, Babylon, Iraq
* Corresponding Author Address: Department of Pharmacology and Therapeutics, College of Medicine, University of Kufa, Najaf Governorate, Kufa, Iraq. P.O Box: 21 (maysamawadh2@gmail.com)
Abstract   (904 Views)
Aims: Leishmaniasis is a parasitic disease caused by the Leishmania parasite, transmitted through the bite of an infected sandfly. The disease presents in four primary clinical forms: visceral, cutaneous, diffuse cutaneous, and post-kala-azar dermal leishmaniasis. The clinical manifestations vary depending on the Leishmania species and the host's immune response. Current treatments include antileishmanial drugs such as amphotericin B, antimonials, sitamaquine, pentamidine, paromomycin, and miltefosine. However, these drugs present challenges, including resistance to pentavalent antimonials and nephrotoxicity. The World Health Organization recommends exploring plants as therapeutic agents due to their efficacy and affordability. Conyza Canadensis, a biennial plant, has been utilized for wound healing and has shown efficacy against both gram-positive and gram-negative bacteria. This study aimed to investigate the anti-leishmanial effect of extracts from C. canadensis on the Iraqi strain of Leishmania tropica.
Materials & Methods: In this experimental study, the extracts were prepared as stock solutions and sub-cultured in RPMI-1640 medium. The cells were incubated in tissue culture flasks and treated with various concentrations of SSG and aqueous/alcoholic extracts. The anti-leishmanial activity of these extracts was evaluated using the sandwich enzyme-linked immunosorbent assay (ELISA) technique. The findings indicated that the extracts possessed anti-leishmanial activity.
Findings: The Iraqi C. canadensis plant extract contained alkaloids, gallic acid, apigenin, chlorogenic acid, caffeic acid, quercetin, p-Coumaric acid, and glutathione. These compounds are known to reduce neopterin levels and enhance the immune response against L. tropica.
Conclusion: The extracts of C. canadensis demonstrate anti-leishmanial activity, correlated with neopterin levels, showing promise as an alternative therapy for leishmaniasis. Further research is necessary to establish their effectiveness.
 
Keywords:

References
1. Irshad H, Khalid MZ. Types and treatments of leishmaniasis. Biomed J Sci Tech Res. 2022;42(5):34037-42. [Link] [DOI:10.26717/BJSTR.2022.42.006815]
2. De Vries HJC, Schallig HD. Cutaneous leishmaniasis: A 2022 updated narrative review into diagnosis and management developments. Am J Clin Dermatol. 2022;23(6):823-40. [Link] [DOI:10.1007/s40257-022-00726-8]
3. Ferreira C, Estaquier J, Silvestre R. Immune-metabolic interactions between Leishmania and macrophage host. Curr Opin Microbiol. 2021;63:231-7. [Link] [DOI:10.1016/j.mib.2021.07.012]
4. Martínez-López M, Soto M, Iborra S, Sancho D. Leishmania hijacks myeloid cells for immune escape. Front Microbiol. 2018;9:883. [Link] [DOI:10.3389/fmicb.2018.00883]
5. Saunders EC, McConville MJ. Immunometabolism of Leishmania granulomas. Immunol Cell Biol. 2020;98(10):832-44. [Link] [DOI:10.1111/imcb.12394]
6. Lazar LTY, Abass KS. Morphology, life cycle, pathogenesis and virulence factors of genus Leishmania: A review. Plant Arch. 2020;20(2):4057-60. [Link]
7. Scorza BM, Carvalho EM, Wilson ME. Cutaneous manifestations of human and murine leishmaniasis. Int J Mol Sci. 2017;18(6):1296. [Link] [DOI:10.3390/ijms18061296]
8. Sloan MA, Brooks K, Otto TD, Sanders MJ, Cotton JA, Ligoxygakis P. Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania. PLoS Genet. 2019;15(11):e1008452. [Link] [DOI:10.1371/journal.pgen.1008452]
9. Majeed RK, Muhammed HF, Rahim HM. Acute toxicity study of indomethacin and oxytetracycline in rabbits. Med J Babylon. 2018;15(3):218-21. [Link] [DOI:10.4103/MJBL.MJBL_60_18]
10. Hamerlinck FF, Van Gool T, Faber WR, Kager PA. Serum neopterin concentrations during treatment of leishmaniasis: Useful as test of cure?. FEMS Immunol Med Microbiol. 2000;27(1):31-4. [Link] [DOI:10.1111/j.1574-695X.2000.tb01408.x]
11. Palić S, Beijnen JH, Dorlo TPC. An update on the clinical pharmacology of miltefosine in the treatment of leishmaniasis. Int J Antimicrob Agents. 2022;59(1):106459. [Link] [DOI:10.1016/j.ijantimicag.2021.106459]
12. Kuryltsiv NB, Zborovska OV. Neopterin, a promising biomarker for the diagnosis of intraocular inflammation. J Ophthalmol. 2021;(3):55-60. [Link] [DOI:10.31288/oftalmolzh202135560]
13. Campos BLS, Silva TN, Ribeiro SP, Carvalho KI, Kallás EG, Laurenti MD, et al. Analysis of iron superoxide dismutase-encoding DNA vaccine on the evolution of the Leishmania amazonensis experimental infection. Parasite Immunol. 2015;37(8):407-16. [Link] [DOI:10.1111/pim.12206]
14. Kristanc L, Božič B, Jokhadar ŠZ, Dolenc MS, Gomišček G. The pore-forming action of polyenes: From model membranes to living organisms. Biochim Biophys Acta Biomembr. 2019;1861(2):418-30. [Link] [DOI:10.1016/j.bbamem.2018.11.006]
15. Chakravarty J, Sundar S. Current and emerging medications for the treatment of leishmaniasis. Expert Opin Pharmacother. 2019;20(10):1251-65. [Link] [DOI:10.1080/14656566.2019.1609940]
16. Bahmani M, Saki K, Ezatpour B, Shahsavari S, Eftekhari Z, Jelodari M, et al. Leishmaniosis phytotherapy: Review of plants used in Iranian traditional medicine on leishmaniasis. Asian Pac J Trop Biomed. 2015;5(9):695-701. [Link] [DOI:10.1016/j.apjtb.2015.05.018]
17. Al-Douri NA. A survey of medicinal plants and their traditional uses in Iraq. Pharm Biol. 2000;38(1):74-9. [Link] [DOI:10.1076/1388-0209(200001)3811-BFT074]
18. Kadereit JW, Bittrich V. Flowering plants. Eudicots. Cham: Springer; 2018. [Link] [DOI:10.1007/978-3-319-93605-5]
19. Abood MA, Kadhim EJ. Phytochemical investigation of some active components in Iraqi Conyza Canadensis (Syn. Erigeron canadensis). Int J Drug Deliv Technol. 2021;11(3):669-75. [Link]
20. Hai N, Akhter RP, Ali I. Isolation, maintenance and detection of Leishmania parasite by microscopy and culture technique. Proceedings of the 2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST). Islamabad; 2017. p. 179-82. [Link] [DOI:10.1109/IBCAST.2017.7868052]
21. Evans WC. Trease and Evans Pharmacognosy. 15th edition. Paris: Bailliere Tindall; 2002. [Link]
22. Ajanal M, Gundkalle MB, Nayak SU. Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer. Anc Sci Life. 2012;31(4):198-201. [Link] [DOI:10.4103/0257-7941.107361]
23. Laouini SE, Ouahrani MR. Phytochemical screening, in vitro antioxidant and antibacterial activity of Rumex vesicarius L. Extract. Sci Study Res Chem Chem Eng Biotechnol Food Ind. 2017;18(4):367-76. [Link] [DOI:10.26832/24566632.2018.030406]
24. Habibatni S, Abdessalam FZ, Hani K, Anwar S, Mansi I, Ali N. In vitro antioxidant, Xanthine oxidase-inhibitory and in vivo Anti-inflammatory, analgesic, antipyretic activity of Onopordum acanthium. Int J Phytomed. 2017;9(1):92-100. [Link] [DOI:10.5138/09750185.2030]
25. Sutariya V, Wehrung D, Geldenhuys WJ. Development and validation of a novel RP-HPLC method for the analysis of reduced glutathione. J Chromatogr Sci. 2012;50(3):271-6. [Link] [DOI:10.1093/chromsci/bmr055]
26. Tofighi Z, Ghazi SN, Hadjiakhoondi A, Yassa N. Determination of cardiac glycosides and total phenols in different generations of Securigera securidaca suspension culture. Res J Pharmacognosy. 2016;3(2):23-31. [Link]
27. Kuo CF, Chen CC, Lin CF, Jan MS, Huang RY, Luo YH, et al. Abrogation of streptococcal pyrogenic exotoxin B-mediated suppression of phagocytosis in U937 cells by Cordyceps sinensis mycelium via production of cytokines. Food Chem Toxicol. 2007; 45(2):278-85. [Link] [DOI:10.1016/j.fct.2006.08.017]
28. Sharp BM. Conversion of the U937 Monocyte into" Macrophage-Like" Populations Exhibiting M1 or M2 Characteristics. Ohio: Wright State University; 2013. [Link]
29. Puentes F, Diaz D, Hoya RD, Gutíerrez JA, Lozano JM, Patarroyo ME, et al. Cultivation and characterization of stable Leishmania guyanensis complex axenic amastigotes derived from infected U937 cells. Am J Trop Med Hyg. 2000;63(1):102-10. [Link] [DOI:10.4269/ajtmh.2000.63.102]
30. Kip AE, Wasunna M, Alves F, Schellens JHM, Beijnen JH, Musa AH, et al. Macrophage activation marker neopterin: A candidate biomarker for treatment response and relapse in visceral leishmaniasis. Front Cell Infect Microbiol. 2018;8:181. [Link] [DOI:10.3389/fcimb.2018.00181]
31. Bührer-Sekula S, Hamerlinck FFV, Out TA, Bordewijk LG, Klatser PR. Simple dipstick assay for semi-quantitative detection of neopterin in sera. J Immunol Methods. 2000;238(1-2):55-8. [Link] [DOI:10.1016/S0022-1759(00)00148-4]
32. Monzote L, Córdova WHP, García M, Piñón A, Setzer WN. In-vitro and In-vivo Activities of Phenolic Compounds Against Cutaneous Leishmaniasis. Rec Nat Prod. 2016;10(3):269. [Link]
33. Murr C, Widner B, Wirleitner B, Fuchs D. Neopterin as a marker for immune system activation. Curr Drug Metab. 2002;3(2):175-87. [Link] [DOI:10.2174/1389200024605082]
34. Shareef RH, Sharba ZF, Hameed EN. The positive role of antioxidants on body immunity: An overview. Med J Babylon. 2021;18(3):169-71. [Link] [DOI:10.4103/MJBL.MJBL_18_21]
35. Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. Flavonoids as anticancer agents. Nutrients. 2020;12(2):457. [Link] [DOI:10.3390/nu12020457]
36. Alves MM, Brito LM, Souza AC, Queiroz BCSH, de Carvalho TP, Batista JF, et al. Gallic and ellagic acids: Two natural immunomodulator compounds solve infection of macrophages by Leishmania major. Naunyn. Schmiedebergs Arch Pharmacol. 2017;390:893-903. [Link] [DOI:10.1007/s00210-017-1387-y]
37. Majumder N, Ganguly S, Ghosh AK, Kundu S, Banerjee A, Saha S. Chlorogenic acid acts upon Leishmania donovani arresting cell cycle and modulating cytokines and nitric oxide in vitro. Parasite Immunol. 2020; 42(6):e12719. [Link] [DOI:10.1111/pim.12719]
38. Kip AE, Balasegaram M, Beijnen JH, Schellens JHM, de Peter J, Vries TPC. Systematic review of biomarkers to monitor therapeutic response in leishmaniasis. Antimicrob Agents Chemother. 2015;59(1):1-14. [Link] [DOI:10.1128/AAC.04298-14]

Add your comments about this article : Your username or Email:
CAPTCHA