Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
JMERC
0.3
Volume 15, Issue 2 (2023)                   Iran J War Public Health 2023, 15(2): 167-175 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)


History

How to cite this article
Abdulhafedh H, Al-Saadoon A, Abu-Mejdad N. Efficiency of Fungal β-carotene Against Some Causative Agents of Dermatomycoses. Iran J War Public Health 2023; 15 (2) :167-175
URL: http://ijwph.ir/article-1-1339-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Biology, College of Science, University of Basrah, Basrah, Iraq
2- Department of Pathological Analyses, College of Science, University of Basrah. Basrah, Iraq
* Corresponding Author Address: Department of Biology, College of Science, University of Basrah, Basrah, Iraq. (Email: moh79kamel@gmail.com)
Abstract   (747 Views)
Aims: Considering the increase of dermatomycoses and the emergence of new strains resistant to antifungal treatment, it is important to find an alternative treatment of natural origin. This study aimed to extract and purify β-carotenoid from two types of Rhodotorula diobovata and Rhodotorula mucilaginosa and test its reactivity toward some yeasts isolated from dermatomycoses infection.
Materials & Methods: Rhodotorula samples were isolated from extreme environmental soils, and after cultivation, they were identified genetically and apparently. Then their pigments were extracted and purified. Beta-carotene was detected by ultraviolet and infrared regions. The activity of β-carotene was tested using three different concentrations using the agar diffusion method against four isolates of Candida and Cutaneotrichosporon dermatis pathogenic species by comparing its reactivity with the antifungal Nystatin.
Findings: All tested isolates, including Candida albicans HAM25, Candida dubliniensis, Candida tropicales HAM13, and Cutaneotrichosporon dermatis Judy 4, showed resistance against β-carotene purified from R. diobovata and Nystatin at the concentration 0.01mg/ml. However, β-carotene and Nystatin showed activity against all isolates with concentrations of 0.02 and 0.03mg/ml. The purified compound from R. mucilaginosa showed activity against all isolates in three concentrations, according to concentration and type. There was a significant difference between the antifungal activity of both purified β-carotene and Nystatin (p<0.0001).
Conclusion: Both isolates of Rhodotorula diobovata and Rhodotorula mucilaginosa produce β-carotene, and the preference quantitatively is to isolate R. diobovata first. The activity of β-carotene against all tested yeast isolates are higher than the antifungal Nystatin.
Keywords:

References
1. Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743‐800. [Link]
2. Zhan P, Liu W. The changing face of dermatophytic infections worldwide. Mycopathologia. 2017;182(1-2):77‐86. [Link] [DOI:10.1007/s11046-016-0082-8]
3. Hube B, Hay R, Brasch J, Veraldi S, SchallerM. Dermatomycoses and inflammation: The adaptive balance between growth, damage, and survival. J Mycol Med. 2015;25(1):e44-58. [Link] [DOI:10.1016/j.mycmed.2014.11.002]
4. Spampinato C, Leonardi D. Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. Biomed Res Int. 2013;2013:204237. [Link] [DOI:10.1155/2013/204237]
5. Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, et al. The biology and chemistry of antifungal agents: a review. Bioorg Med Chem. 2012;20(19):5678-98. [Link] [DOI:10.1016/j.bmc.2012.04.045]
6. Denning DW, Hope WW. Therapy for fungal diseases: opportunities and priorities. Trend Microbiol. 2010;18(5):195-204. [Link] [DOI:10.1016/j.tim.2010.02.004]
7. Tripathi R, Paudel V, Pradhan M, Pandey BR. Growing burden of dermatophytosis in southern region of Nepal. Br J Dermatol. 2021;185(S1):48. [Link] [DOI:10.1111/bjd.20013]
8. Chen E, Ghannoum M, Elewski BE. Treatment‐resistant tinea corporis, a potential public health issue. Br J Dermatol. 2021;184(1):164‐5. [Link] [DOI:10.1111/bjd.19420]
9. Halvaee S, Daie‐Ghazvini R, Hashemi SJ, Khodavaisy S, Rahimi-Foroushani A, Bakhshi H, et al. A mycological and molecular epidemiologic study on onychomycosis and determination in vitro susceptibilities of isolated fungal strains to conventional and new antifungals. Front Cell Infect Microbiol. 202;15(11):693522. [Link] [DOI:10.3389/fcimb.2021.693522]
10. Powell J, Porter E, Field S, O'Connell NH, Carty K, Dunne CP. Epidemiology of dermatomycoses and onychomycoses in Ireland (2001-2020): A single‐institution review. Mycoses. 2022;65(7):770-9. [Link] [DOI:10.1111/myc.13473]
11. Mba IE, Nweze EI. Mechanism of Candida pathogenesis: revisiting the vital drivers. Eur J Clin Microbiol Infect Dis. 2020;39(10):1797-819. [Link] [DOI:10.1007/s10096-020-03912-w]
12. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645-58. [Link] [DOI:10.2147/IDR.S173867]
13. Aberoumand A. A review article on edible pigments properties and sources as natural colorants in foodstuff and food industry. World J Dairy Food Sci. 2011;6(1):71-8. [Link]
14. Ferreira CV, Bos CL, Versteeg HH, Justo GZ, Durán N, Peppelenbosch MP. Molecular mechanism of violacein-mediated human leukemia cell death. Blood. 2004;104(5):1459-67. [Link] [DOI:10.1182/blood-2004-02-0594]
15. Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV, Hardwick JCH. Violacein synergistically increases 5-fluorouracil cytotoxity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis 2006;27(3):508-16. [Link] [DOI:10.1093/carcin/bgi307]
16. Koyyati R, Kudle KR, Padigya, PRM. Antibacterial, antioxidant and cytotoxic activity of bacterial carotenoids isolated from Rhodopseudomonas palustris KRPR01 and KRPR02. Int J Pharm Sci Res. 2019;10(10):4644-9. [Link]
17. Joshi V, Attri D, Bala A, Bhushan S. Microbial pigments. Indian J Biotechnol. 2003;2(3):362-9. [Link]
18. Manikprabhu D and Lingappa K. γ Actinorhodin a natural and attorney source for the synthetic dye to detect acid production of fungi. Saudi J Biol Sci. 2013;20(2):163-68. [Link] [DOI:10.1016/j.sjbs.2013.01.004]
19. Vargas-Sinisterra AF, Ramírez-Castrillón M. Yeast carotenoids: production and activity as antimicrobial biomolecule. Arch Microbiol. 2021;203:873-88. [Link] [DOI:10.1007/s00203-020-02111-7]
20. Choudhary MKN, Mallya R. Phytochemical investigation and antibacterial activity of a medicinal plant. International Journal of Pharmaceutical and Pharmacological Research. 2019;9(4):53-8. [Link]
21. Mansy W, Rathod S. Temporal association between antibiotic use and resistance in Gram-negative bacteria. Arch Pharm Pract. 2020;11(2):13-8. [Link]
22. Haddad M, Aghaei S, Zargar M. Antimicrobial and antioxidant activity of carotenoid pigment produced by native Rhodococcus spp. isolated from soil. Int J Mol Clin Microbiol. 2017;7(1):809-15. [Link]
23. Yolmeh M, Hamedi H, Khomeiri M. Antimicrobial activity of pigments extracted from Rhodotorula glutinis against some bacteria and fungi. Zahedan J Res Med Sci. 2016;18(12):e4954. [Link] [DOI:10.17795/zjrms-4954]
24. Afra S, Makhdoumi A, Matin MM, Feizy J. A novel red pigment from marine Arthrobacter sp. G20 with specific anticancer activity. J Appl Microbiol. 2017;123(5):1228-36. [Link] [DOI:10.1111/jam.13576]
25. Azman AS, Mawang CI, Abubakar S. Bacterial pigments and an alternative for therapeutic as applications. Natural Product Communications. 2018;13(12):1747-50. [Link] [DOI:10.1177/1934578X1801301240]
26. Venil CK, Zakaria ZA, Ahmad WA. Bacterial pigments and their applications. Process Biochem. 2013;48(7):1065-79. [Link] [DOI:10.1016/j.procbio.2013.06.006]
27. Caro Y, Venkatachalam M, Lebeau J, Fouillaud M, Dufossé L. Pigments and colorants from filamentous fungi. In Merillon JM, Ramawat K, editors. Fungal metabolites. 1st Edition. Chambridge, UK: Springer International Publishing; 2017. Pp: 499-568. [Link] [DOI:10.1007/978-3-319-25001-4_26]
28. Kurtzman CP, Fell JW, Boekhout T. The yeast. A taxonomic study. Volume 1-3. 5th Edition. San Diego, CA: Elsevier; 2010. [Link]
29. Buzzini P, Martini A, Gaetani M, Turchetti B, Pagnoni UM, Davoli P. Optimization of carotenoid production by Rhodotorula graminis DBVPG 7021 as a function of trace element concentration by means of response surface analysis. Enzyme Microb Technol. 2005;36(5-6):687-92. [Link] [DOI:10.1016/j.enzmictec.2004.12.028]
30. Somashekar D, Joseph R. Inverse relationship between carotenoid and lipid formation in Rhodotorula gracilis according to the C/N ratio of the growth medium. World J Microbiol Biotech. 2000;16:491-93. [Link] [DOI:10.1023/A:1008917612616]
31. Latha BV, Jeevaratnam K. Purification and characterization of the pigments from Rhodotorula glutinis DFR-PDY isolated from natural source. Glob J Biotechnol Biochem. 2010;5(3):166-74. [Link]
32. Silverstein RM, Webster FX, Kiemle DJ, Bryce DL. Spectrometric identification of organic compounds. 8th Edition. Wiley; 2014. [Link]
33. Macfaddin JF. Biochemical tests for identification of medical bacteria, 3rd Edition. London: The Williams and Wilkins Co.; 2000. [Link]
34. National Committee for Clinical Laboratory Standards (NCCLS). Methods for Dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 9th Edition. Wayne, Pa: Clinical and Laboratory Standards Institute; 2012. [Link]
35. Nair MG, Putnam AR, Mishra SK, Mulks MH, Taft WH, Keller JE, et al. Faeriefungin: a new board-spectrum antibiotic from streptomyces griseus var. autotrophicus. J Natural Prod. 1989;52(4):797-809. [Link] [DOI:10.1021/np50064a022]
36. Matsuda T, Matsumoto T. Treatment-resistant dermatomycoses. Nihon Ishinkin Gakkai Zasshi. 1998;39(4):219-23. [Japanese] [Link] [DOI:10.3314/jjmm.39.219]
37. Sardana K, Kaur R, Arora P, Goyal R, Ghunawat S. Is antifungal resistance a cause for treatment failure in dermatophytosis: a study focused on Tinea Corporis and Cruris from a Tertiary Centre? Indian Dermatol Online J. 2018;9(2):90-5. [Link] [DOI:10.4103/idoj.IDOJ_137_17]
38. Guerin M, Huntley ME, Olaizola M. Haematococcusastaxanthin: Applications for Human. Health and Nutrition. Trend Biotechnol. 2003;21(5):210-6. [Link] [DOI:10.1016/S0167-7799(03)00078-7]
39. Astuti W, Radjasa OK, Karwur FF, Rondonuwu FS. Identification of carotenoids in Halimeda macroloba reef associated bacteria. Indonesian J Marine.Sci. 2016;21(4):151-60. [Link]
40. Paul D, Kusuma Kumar Pi, Siddiqui N. Yeast carotenoids: cost-effective fermentation strategies for health care applications. Fermentation. 2023;9(2):147. [Link] [DOI:10.3390/fermentation9020147]
41. Zeb A, Murkovic M. Thin-layer chromatographic analysis of carotenoids in plant and animal samples. J Planar Chromatogr Mod TLC. 2010;23:94-103. [Link] [DOI:10.1556/JPC.23.2010.2.1]
42. Dawoud TM, Alharbi NS, Theruvinthalakal AM, Thekkangil A, Kadaikunnan S, Khaled J, et al. Characterization and antifungal activity of the yellow pigment produced by a Bacillus sp. DBS4 isolated from the lichen Dirinaria agealita. Saudi J Biol Sci. 2020;27(5):1403-11. [Link] [DOI:10.1016/j.sjbs.2019.11.031]
43. Madhukar CV. Antimicrobial and antioxidant potentials of carotenoid pigment produced by indigenous novel soil isolate Rhodococcus kroppenstedtii. World J Environ Biosci. 2021;10(1):29-34.‏ [Link] [DOI:10.51847/9QrSrJyTN2]
44. Finkel'shtein EI. Modern methods of analysis of carotenoids. Pharm Chem J. 2016;50(2):96-107. [Link] [DOI:10.1007/s11094-016-1405-2]
45. Arendrup MC, Boekhout T, Akova M, Meis JF, Cornely OA, Lortholary O, et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin Microbiol Infect. 2014;20 Suppl 3:76-98. [Link] [DOI:10.1111/1469-0691.12360]
46. Manimala MRA, Murugesan R. In vitro antioxidant and antimicrobial activity of carotenoid pigment extracted from Sporobolomyces sp. isolated from natural source. J Appl Natural Sci. 2014;6(2):649-53. [Link] [DOI:10.31018/jans.v6i2.511]
47. Ungureanu C, Ferdes M. Evaluation of antioxidant and antimicrobial activities of torularhodin. Adv Sci Lett. 2012;18:50-3. [Link] [DOI:10.1166/asl.2012.4403]
48. Dumitriu C, Ungureanu C, Popescu S, Tofan V, Popescu M, Pirvu C. Ti surface modification with a natural antioxidant and antimicrobial agent. Surf Coat Technol. 2015;276:175-85. [Link] [DOI:10.1016/j.surfcoat.2015.06.063]
49. Keceli TM, Erginkaya Z, Turkkan E, Kaya U. Antioxidant and Antibacterial Effects of Carotenoids extracted from Rhodotorula glutinis Ssrains. Asian J Chem. 2013;25(1):42-6. [Link] [DOI:10.14233/ajchem.2013.12377]
50. Manimala MRA, Murugesan R, Gunasekaren S. Antimicrobial activity of carotenoid pigment produced from Yeast Rhodotorula mucilaginosa YP 187. Trend Biosci. 2014;7(9):769-72. [Link]
51. Yoo AY, Alnaeeli M, Park J. Production control and characterization of antibacterial carotenoids from yeast Rhodotorula mucilaginosa AY-01. Process Biochem. 2016;51:463-73. [Link] [DOI:10.1016/j.procbio.2016.01.008]
52. Burton GW, Mogg TJ, Stupak J, Stark FC, Twine SM, Li J. Safety and uptake of fully oxidized β-carotene. Food Chem Toxicol. 2022;168:113387. [Link] [DOI:10.1016/j.fct.2022.113387]

Add your comments about this article : Your username or Email:
CAPTCHA