Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
Volume 15, Issue 2 (2023)                   Iran J War Public Health 2023, 15(2): 191-198 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)


How to cite this article
Al-Saadi Z, Al-Aswad F, Sheaheed N. Oral Opportunistic Bacteria in Multiple Sclerosis with Different Treatment Modalities. Iran J War Public Health 2023; 15 (2) :191-198
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Ministry of Health and Environment, Baghdad, Iraq
2- Department of Oral Medicine, College of Dentistry, Baghdad University, Baghdad, Iraq
3- Neurology Division Baghdad Teaching Hospital Medical City, Baghdad, Iraq
* Corresponding Author Address: Ministry of Health and Environment, Republic of Iraq, Baghdad 10047, Iraq. Postal Code: 10047 (
Abstract   (392 Views)
Aims: Multiple sclerosis is a chronic demyelinating disease that is considered an autoimmune disorder affecting the central nervous system. This study aimed to investigate the pathogenic changes in the natural flora of the mouth in MS patient during different treatment modalities and compare them with healthy individuals.
Materials & Methods: 120 patients were volunteered and divided into four groups of 30 people: 1) patients with MS taking Natalizumab or Tysabri, 2) patients with MS taking Betaferon, 3) naive MS patients without medications, 4) healthy individuals (control). The changes in oral bacteria (Staphylococcus aureus, Porphyromonas gingivalis, and Bacteroides fragilis) were investigate using real time-PCR.
Findings: The prevalence of S. aureus was significantly higher in the Naive MS group (p=0.016), Betaferon group (p=0.001), and Tysabri group (p=0.0001) compared to the healthy group, as well as in Tysabri group compared to the Naive MS group (p=0.005). The prevalence of P. gingivalis was significantly higher in the Betaferon group (p=0.002) and Tysabri group (p=0.0001) compared to the healthy group, as well as in Tysabri group compared to the Naive MS group (p=0.020). The prevalence of B. fragilis was significantly higher in the Naive MS group (p=0.008), Betaferon group (p=0.015), and Tysabri group (p=0.008) compared to the healthy group.
Conclusion: Oral bacteria are involved in MS development. Furthermore, MS patients are more susceptible to periodontal disease due to high P. gingivalis presence, and these patients need to receive extra care to prevent periodontal disease.

1. Murúa SR, Farez MF, Quintana FJ. The immune response in multiple sclerosis. Annu Rev Pathol. 2022;17:121-39. [Link] [DOI:10.1146/annurev-pathol-052920-040318]
2. Soud SA, Al-Rubaei SHN. Study of ABO system and multiple sclerosis disease in Iraq. Iraq J Sci.2022;63:2345-53. [Link] [DOI:10.24996/ijs.2022.63.6.3]
3. Hassoun HK, Al-Mahadawi A, Sheaheed NM, Sami SM, Jamal A, Allebban Z. Epidemiology of multiple sclerosis in Iraq: Retrospective review of 4355 cases and literature review. Neurol Res.2022;44(1):14-23. [Link] [DOI:10.1080/01616412.2021.1952511]
4. da Cunha ETS, Figueiredo-Godoi LMA, Santos DH, Carneiro RPCD, do Olival GS, de Barros PP, et al. Oral colonization by candida species in patients with multiple sclerosis. Mycopathologia. 2020;185(6):983-91. [Link] [DOI:10.1007/s11046-020-00486-1]
5. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162-73. [Link] [DOI:10.1016/S1474-4422(17)30470-2]
6. Marvin M. Goldenberg multiple sclerosis review. Pharm Ther. 2012;37(3):175-84. [Link]
7. Luna G, Alping P, Burman J, Fink K, Fogdell-Hahn A, et al. Infection risks among patients with multiple sclerosis treated with fingolimod, natalizumab, rituximab, and injectable therapies. JAMA Neurol. 2020;77(2):184-91. [Link] [DOI:10.1001/jamaneurol.2019.3365]
8. Loma I, Heyman R. Multiple sclerosis: Pathogenesis and treatment. Curr Neuropharmacol. 2011;9(3):409-16. [Link] [DOI:10.2174/157015911796557911]
9. Dhib-Jalbut S, Marks S. Interferon- mechanisms of action in multiple sclerosis. Neurology. 2010;74:S17-24. [Link] [DOI:10.1212/WNL.0b013e3181c97d99]
10. Zorba M, Melidou A, Patsatsi A, Ioannou E, Kolokotronis A. The possible role of oral microbiome in autoimmunity. Int J Womens Dermatol. 2020;6(5):357-64. [Link] [DOI:10.1016/j.ijwd.2020.07.011]
11. Zangeneh Z, Abdi-Ali A, Khamooshian K, Alvandi A, Abiri R. Bacterial variation in the oral microbiota in multiple sclerosis patients. PLoS One. 2021;16(11):e0260384. [Link] [DOI:10.1371/journal.pone.0260384]
12. Franciotti R, Pignatelli P, Carrarini C, Romei FM, Mastrippolito M, Gentile A, et al. Exploring the connection between Porphyromonas gingivalis and neurodegenerative diseases: A pilot quantitative study on the bacterium abundance in oral cavity and the amount of antibodies in serum. Biomolecules. 2021;11(6):845. [Link] [DOI:10.3390/biom11060845]
13. González-Sanmiguel J, Schuh CMAP, Muñoz-Montesin C, Contreras-Kallens P, Aguayo LG, Aguayo S. Complex Interaction between Resident Microbiota and Misfolded Proteins: Role in Neuroinflammation and Neurodegeneration. Cells. 2020;9(11):2476. [Link] [DOI:10.3390/cells9112476]
14. Li J, Yang J, Lu Y, Wu S, Wang M, Zhu J. Possible role of staphylococcal enterotoxin B in the pathogenesis of autoimmune diseases. Viral Immunol. 2015;28(7):354-9. [Link] [DOI:10.1089/vim.2015.0017]
15. Mulvey MR, Doupe M, Prout M, Leong C, Hizon R, Grossberndt A, et al. Staphylococcus aureus harbouring Enterotoxin A as a possible risk factor for multiple sclerosis exacerbations. Mult Scler J. 2011;17(4):397-403. [Link] [DOI:10.1177/1352458510391343]
16. Ballah FM, Islam MS, Rana ML, Ferdous FB, Ahmed R, Pramanik PK, et al. Phenotypic and genotypic detection of biofilm-forming Staphylococcus aureus from different food sources in Bangladesh. Biology (Basel). 2022;11(7):949. [Link] [DOI:10.3390/biology11070949]
17. Krishnan M. Detection of Porphyromonas gingivalis fimA type I genotype in gingivitis by real-time PCR- a pilot study. J Clin Diagnostic Res. 2016;10(6):ZC32-5. [Link] [DOI:10.7860/JCDR/2016/17938.7979]
18. Bakuradze N, Merabishvili M, Makalatia K, Kakabadze E, Grdzelishvili N, Wagemans J, et al. In vitro evaluation of the therapeutic potential of phage VA7 against enterotoxigenic Bacteroides fragilis infection. Viruses. 2021;13(10):2044. [Link] [DOI:10.3390/v13102044]
19. Shahi SK, Freedman SN, Mangalam AK. Gut microbiome in multiple sclerosis: The players involved and the roles they play. Gut Microbes. 2017;8(6):607-15. [Link] [DOI:10.1080/19490976.2017.1349041]
20. Jangi S, Gandhi R, Cox LM, Li N, Von Glehn F, Yan R, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016;7(1):12015. [Link] [DOI:10.1038/ncomms12015]
21. Trott S, King IL. An introduction to the microbiome and MS. Mult Scler J. 2018;24(1):53-7. [Link] [DOI:10.1177/1352458517737391]
22. Amini ME, Shomali N, Bakhshi A, Rezaei S, Hemmatzadeh M, Hosseinzadeh R, et al. Gut microbiome and multiple sclerosis: New insights and perspective. Int. Immunopharmacol. 2020;88:107024. [Link] [DOI:10.1016/j.intimp.2020.107024]
23. Wu YF, Lee WF, Salamanca E, Yao WL, Su JN, Wang SY, et al. Oral microbiota changes in elderly patients, an indicator of alzheimer's disease. Int J Environ Res Public Health. 2021;18(8):4211. [Link] [DOI:10.3390/ijerph18084211]
24. Li Z, Peres AG, Damian AC, Madrenas J. Immunomodulation and disease tolerance to Staphylococcus aureus. Pathogens. 2015;4(4):793-815. [Link] [DOI:10.3390/pathogens4040793]
25. Marrodan M, Alessandro L, Farez MF, Correale J. The role of infections in multiple sclerosis. Mult Scler J. 2019;25(7):891-901. [Link] [DOI:10.1177/1352458518823940]
26. Sadeghi J, Alizadeh N, Ahangar Oskouei M, Laghusi D, Savadi Oskouei D, Nikanfar M, et al. Frequency of superantigen encoding genes of Staphylococcus aureus isolates collected from multiple sclerosis (MS) patients and nasal carriers. Microb Pathog. 2019;127:316-9. [Link] [DOI:10.1016/j.micpath.2018.12.010]
27. Sheykhsaran E, Abbasi A, Baghi HB, Ghotaslou R, Sharifi Y, Sefidan FY, et al. Staphylococcus aureus: A bacterial candidate for multiple sclerosis incidence and progression. Rev Res Med Microbiol. 2022;33:212-20. [Link]
28. Jassim SA, Kandala NJ. Molecular detection of enterotoxin genes of multiresistant Staphylococcus aureus isolates from different sources of food. Iraq J. Sci. 2021;62(1):61-74. [Link] [DOI:10.24996/ijs.2021.62.1.6]
29. Winkelmann A, Loebermann M, Reisinger EC, Zettl UK. Multiple sclerosis treatment and infectious issues: Update 2013. Clin Exp Immunol. 2014;175(3):425-38. [Link] [DOI:10.1111/cei.12226]
30. Taylor TA, Unakal CG. Staphylococcus aureus Infection. Florida: StatPearls; 2022. [Link]
31. Cuesta AI, Jewtuchowicz V, Brusca MI, Nastri ML, Rosa AC. Prevalence of Staphylococcus spp and Candida spp in the oral cavity and periodontal pockets of periodontal disease patients. Acta Odontol Latinoam. 2010;23(1):20-6. [Link]
32. Morrow SA, Clift F, Devonshire V, Lapointe E, Schneider R, Stefanelli M, et al. Use of natalizumab in persons with multiple sclerosis: 2022 update. Mult Scler Relat Disord. 2022;65:103995. [Link] [DOI:10.1016/j.msard.2022.103995]
33. Conlon BP. Staphylococcus aureus chronic and relapsing infections: Evidence of a role for persister cells: An investigation of persister cells, their formation and their role in S. aureus disease. Bioessays. 2014;36(10):991-6. [Link] [DOI:10.1002/bies.201400080]
34. Hirai K, Yamaguchi-Tomikawa T, Eguchi T, Maeda H, Takashiba S. Identification and modification of Porphyromonas gingivalis cysteine protease, gingipain, ideal for screening periodontitis. Front Immunol. 2020;11:1-15. [Link] [DOI:10.3389/fimmu.2020.01017]
35. Grollmus ZCN, Chávez MCM, Donat FJS. Periodontal disease associated to systemic genetic disorder. Med Oral Patol Oral Cir Bucal. 2007;12(3):E211-5. [Link]
36. Julkunen A, Heikkinen A, Söder B, Söder PÖ, Toppila-Salmi S, Meurman J. Autoimmune diseases and oral health: 30-year follow-up of a swedish cohort. Dent J. 2017;6(1):1. [Linkv] [DOI:10.3390/dj6010001]
37. Kareem HH, Al-ghurabi BH, Albadri C. Molecular detection of Porphyromonas gingivalis in COVID-19 Patients. J Baghdad Coll Dentistry. 2022;34(2):52-61. [Link] [DOI:10.26477/jbcd.v34i2.3145]
38. Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al. Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5(1):eaau3333. [Link] [DOI:10.1126/sciadv.aau3333]
39. Li Y, Guo R, Oduro PK, Sun T, Chen H, Yi Y, et al. The relationship between Porphyromonas gingivalis and rheumatoid arthritis: A meta-analysis. Front Cell Infect Microbiol. 2022;12:956417. [Link] [DOI:10.3389/fcimb.2022.956417]
40. Qadir MIA, Al-Waheb AM. Salivary C- reactive protein in relation to periodontal health among a group of patients with rheumatoid arthritis in Iraq. J Baghdad Coll Dentistry. 2014;26(3):138-43. [Link] [DOI:10.12816/0015239]
41. Mei F, Xie M, Huang X, Long Y, Lu X, Wang X, et al. Porphyromonas gingivalis and its systemic impact: Current status. Pathogens. 2020;9(11):944. [Link] [DOI:10.3390/pathogens9110944]
42. Lukiw WJ. Bacteroides fragilis lipopolysaccharide and inflammatory signaling in Alzheimer's disease. Front Microbiol. 2016;7:1544. [Link] [DOI:10.3389/fmicb.2016.01544]
43. Loria K. Common Gut Bacteria Linked to Autoimmune Diseases [Internet]. New Jersey: MJH Life Sciences. 2019 Feb- [cited 2022 Nov 3].Available from: [Link]

Add your comments about this article : Your username or Email: