Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
JMERC
0.4
Volume 14, Issue 2 (2022)                   Iran J War Public Health 2022, 14(2): 225-230 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)

History

How to cite this article
Najim Rasool R, Aboud Khalifa A. Studying the Role of Interleukin-6, C-Reactive Protein, and Nitric Oxide Synthase in Obese, Diabetic, and Sub-Fertile Men. Iran J War Public Health 2022; 14 (2) :225-230
URL: http://ijwph.ir/article-1-1168-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
1- Department of Biology, College of Science, University of Misan, Maysan, Iraq
* Corresponding Author Address: Department of Biology, College of Science, University of Misan, Maysan, Iraq (rayaaltimimy@gmail.com)
Abstract   (1550 Views)
Aims: This study aimed to investigate the role of Interleukin-6, C-reactive protein, and Nitric oxide synthase in obese, diabetic, and sub-fertile men.
Material & Methods: The current study was conducted in some health centers in Misan province, Iraq, from December 2020 to July 2021. The whole sample included 80 men aged 35-45 years, divided into four groups (20 men/group). Eight to ten milliliters of venous blood samples were drawn at 9 - 11 am, using a disposable needle and plastic syringes for each man. The blood was left at room temperature for 15 minutes for coagulation, centrifuged at 3000rpm for 5 minutes, then serum and plasma were separated and transferred for storage. Statistical analysis was performed by IBM SPSS 23 using ANOVA.
Findings: Results revealed: Interleukin-6 increased significantly (p<0.05), except in the diabetic group, in different groups in comparison with the control, C-reactive protein increased significantly (p<0.05) in different groups in comparison with the control, Nitric oxide synthase decreased significantly (p<0.05), except in sub-fertility group, in different groups in comparison with the control.
Conclusion: The Interleukin-6 and C-reactive protein increment and Nitric oxide synthase reduction in different groups might be indicated a pro-inflammatory action and low fertility in obesity, diabetic and sub-fertility groups.
 
Keywords:

References
1. Li Q, Wang QI, Xu W, Ma Y, Wang Q, Eatman D, et al. C-reactive protein causes adult-onset obesity through chronic inflammatory mechanism. Front Cell Dev Biol. 2020;8:18. [Link] [DOI:10.3389/fcell.2020.00018]
2. Rehman K, Akash MS, Liaqat A, Kamal S, Qadir MI, Rasul A. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus. Crit Rev Eukaryot Gene Expr. 2017;27(3):229-36. [Link] [DOI:10.1615/CritRevEukaryotGeneExpr.2017019712]
3. Stenlöf K, Wernstedt I, Fjällman T, Wallenius V, Wallenius K, Jansson JO. Interleukin-6 levels in the central nervous system are negatively correlated with fat mass in overweight/obese subjects. J Clin Endocrinol Metab. 2003;88(9):4379-83. [Link] [DOI:10.1210/jc.2002-021733]
4. Takumansang R, Warouw SM, Lestari H. Interleukin-6 and insulin resistance in obese adolescents. Paediatrica Indonesiana. 2013;53(5):268-72. [Link] [DOI:10.14238/pi53.5.2013.06]
5. Kanmani S, Kwon M, Shin MK, Kim MK. Association of C-reactive protein with risk of developing type 2 diabetes mellitus, and role of obesity and hypertension: a large population-based Korean cohort study. Sci Rep. 2019;9:4573. [Link] [DOI:10.1038/s41598-019-40987-8]
6. Sandler S, Bendtzen K, Eizirik DL, Welsh M. Interleukin-6 affects insulin secretion and glucose metabolism of rat pancreatic islets in vitro. Endocrinology. 1990;126(2):1288-94. [Link] [DOI:10.1210/endo-126-2-1288]
7. Fröhlich M, Imhof A, Berg G, Hutchinson WL, Pepys MB, Boeing HE, et al. Association between C-reactive protein and features of the metabolic syndrome: a population-based study. Diabetes care. 2000;23(12):1835-9. [Link] [DOI:10.2337/diacare.23.12.1835]
8. Cinelli MA, Do HT, Miley GP, Silverman RB. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Medicin Res Rev. 2020;40(1):158-89. [Link] [DOI:10.1002/med.21599]
9. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357(Pt 3):593-615. [Link] [DOI:10.1042/bj3570593]
10. Kone BC, Kuncewicz T, Zhang W, Yu ZY. Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. Am J Physiol Renal Physiol. 2003;285(2):F178-90. [Link] [DOI:10.1152/ajprenal.00048.2003]
11. Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994;78(6):915-8. [Link] [DOI:10.1016/0092-8674(94)90266-6]
12. Luo Y, Zhu Y, Basang W, Wang X, Li C, Zhou X. Roles of nitric oxide in the regulation of reproduction: a review. Front endocrinol. 2021;12. [Link] [DOI:10.3389/fendo.2021.752410]
13. O'Bryan MK, Schlatt S, Gerdprasert O, Phillips DJ, de Kretser DM, Hedger MP. Inducible nitric oxide synthase in the rat testis: evidence for potential roles in both normal function and inflammation-mediated infertility. Biol Reprod. 2000;63(5):1285-93. [Link] [DOI:10.1095/biolreprod63.5.1285]
14. Krause M, Rodrigues-Krause J, O'Hagan C, De Vito G, Boreham C, Susta D, et al. Differential nitric oxide levels in the blood and skeletal muscle of type 2 diabetic subjects may be consequence of adiposity: a preliminary study. Metabolism. 2012;61(11):1528-37. [Link] [DOI:10.1016/j.metabol.2012.05.003]
15. Foroumandi E, Alizadeh M, Kheirouri S, Asghari Jafarabadi M. Exploring the role of body mass index in relationship of serum nitric oxide and advanced glycation end products in apparently healthy subjects. PLoS One. 2019;14(3):e0213307. [Link] [DOI:10.1371/journal.pone.0213307]
16. Valerio A, Cardile A, Cozzi V, Bracale R, Tedesco L, Pisconti A, et al. TNF-α downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Invest. 2006;116(10):2791-8. [Link] [DOI:10.1172/JCI28570.]
17. Bowker N, Shah RL, Sharp SJ, Stewart ID, Wheeler E, Ferreira MA, et al. Meta-analysis investigating the role of interleukin-6 mediated inflammation in type 2 diabetes. EBioMedicine. 2020;61:103062. [Link] [DOI:10.1016/j.ebiom.2020.103062]
18. El-Mikkawy DM, EL-Sadek MA, EL-Badawy MA, Samaha D. Circulating level of interleukin-6 in relation to body mass indices and lipid profile in Egyptian adults with overweight and obesity. Egyp Rheumatol Rehabil. 2020;47:7. [Link] [DOI:10.1186/s43166-020-00003-8]
19. Khera A, Vega GL, Das SR, Ayers C, McGuire DK, Grundy SM, et al. Sex differences in the relationship between C-reactive protein and body fat. J Clin Endocrinol Metab. 2009;94(9):3251-8. [Link] [DOI:10.1210/jc.2008-2406]
20. Mahwati Y, Nurrika D. Obesity indicators and C-reactive protein in Indonesian adults (more than equal to 40 years old): the Indonesian family life survey 5. Nat Public Health J. 2020;15(4). [Link] [DOI:10.21109/kesmas.v15i4.3296]
21. Khaodhiar L, Ling PR, Blackburn GL, Bistrian BR. Serum levels of interleukin‐6 and C‐reactive protein correlate with body mass index across the broad range of obesity. J Parenter Enteral Nutr. 2004;28(6):410-5. [Link] [DOI:10.1177/0148607104028006410]
22. Galcheva SV, Iotova VM, Yotov YT, Bernasconi S, Street ME. Circulating proinflammatory peptides related to abdominal adiposity and cardiometabolic risk factors in healthy prepubertal children. Eur J Endocrinol. 2011;164(4):553-8. [Link] [DOI:10.1530/EJE-10-1124]
23. Bruun JM, Verdich C, Toubro S, Astrup A, Richelsen B. Association between measures of insulin sensitivity and circulating levels of interleukin-8, interleukin-6 and tumor necrosis factor-alpha. Effect of weight loss in obese men. Eur J Endocrinol. 2003;148(5):535-42. [Link] [DOI:10.1530/eje.0.1480535]
24. Akbari M, Hassan-Zadeh V. IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology. 2018;26(3):685-98. [Link] [DOI:10.1007/s10787-018-0458-0]
25. Dungan KM, Braithwaite SS. Preiser. Stress Hyperglycaemia. Lancet. 2009;373(9677):1798-807. [Link] [DOI:10.1016/S0140-6736(09)60553-5]
26. Nakamura M, Oda S, Sadahiro T, Watanabe E, Abe R, Nakada TA, et al. Correlation between high blood IL-6 level, hyperglycemia, and glucose control in septic patients. Crit Care. 2012;16(2):R58. [Link] [DOI:10.1186/cc11301]
27. Phosat C, Panprathip P, Chumpathat N, Prangthip P, Chantratita N, Soonthornworasiri N, et al. Elevated C-reactive protein, interleukin 6, tumor necrosis factor alpha and glycemic load associated with type 2 diabetes mellitus in rural Thais: a cross-sectional study. BMC Endocr Disord. 2017;17(1):44. [Link] [DOI:10.1186/s12902-017-0189-z]
28. Liu Y, Zhang Z, Jin Q, Liu Y, Kang Z, Huo Y, et al. Hyperprolactinemia is associated with a high prevalence of serum autoantibodies, high levels of inflammatory cytokines and an abnormal distribution of peripheral B-cell subsets. Endocrine. 2019;64(3):648-56. [Link] [DOI:10.1007/s12020-019-01896-y]
29. Tremellen K, McPhee N, Pearce K. Metabolic endotoxaemia related inflammation is associated with hypogonadism in overweight men. Basic Clin Androl. 2017;27:5. [Link] [DOI:10.1186/s12610-017-0049-8]
30. Langer C, Gansz B, Goepfert C, Engel T, Uehara Y, von Dehn G, Jansen H, Assmann G, von Eckardstein A. Testosterone up-regulates scavenger receptor BI and stimulates cholesterol efflux from macrophages. Biochem Biophys Res Commun. 2002;296(5):1051-7. [Link] [DOI:10.1016/S0006-291X(02)02038-7]
31. Benjamin UO, Akhere TI, Orhue AA. The prevalence and patterns of endocrinopathies amongs azoospermic male partners at a fertility clinic in Benin city. Endocrinol Metab Int J. 2014;1(1):8-13. [Link] [DOI:10.15406/emij.2014.01.00003]
32. Qusay Falih I, AH Alobeady M, Banoon SR, Saleh MY. Role of oxidized low-density lipoprotein in human diseases: a review. J Chem Health Risks. 2021;11:71-83. [Link]
33. Habib SS, Eshki A, AlTassan B, Fatani D, Helmi H, AlSaif S. Relationship of serum novel adipokine chemerin levels with body composition, insulin resistance, dyslipidemia and diabesity in Saudi women. Eur Rev Med Pharmacol Sci. 2017;21(6):1296-302. [Link]
34. Weigert J, Neumeier M, Wanninger J, Filarsky M, Bauer S, Wiest R, et al. Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clin Endocrinol. 2010;72(3):342-8. [Link] [DOI:10.1111/j.1365-2265.2009.03664.x]
35. Tahir NT, Falih IQ, AL_Husaini FK, Zeghair SA. Study the effect of chemerin level in type ii diabetic patients with and without retinopathy. Syst Rev Pharm. 2020;11(11):1856-63. [Link]
36. Tessari P, Cecchet D, Cosma A, Vettore M, Coracina A, Millioni R, et al. Nitric oxide synthesis is reduced in subjects with type 2 diabetes and nephropathy. Diabetes. 2010;59(9):2152-9. [Link] [DOI:10.2337/db09-1772]
37. Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation. 2001;104(3):342-5. [Link] [DOI:10.1161/01.CIR.104.3.342]
38. Kashyap SR, Roman LJ, Lamont J, Masters BS, Bajaj M, Suraamornkul S, et al. Insulin resistance is associated with impaired nitric oxide synthase activity in skeletal muscle of type 2 diabetic subjects. J Clin Endocrinol Metab. 2005;90(2):1100-5. [Link] [DOI:10.1210/jc.2004-0745]
39. Andric SA, Gonzalez-Iglesias AE, Van Goor F, Tomić M, Stojilkovic SS. Nitric oxide inhibits prolactin secretion in pituitary cells downstream of voltage-gated calcium influx. Endocrinology. 2003;144(7):2912-21. [Link] [DOI:10.1210/en.2002-0147]
40. Duvilanski BH, Zambruno C, Seilicovich A, Pisera D, Lasaga M, Diaz MD, et al. Role of nitric oxide in control of prolactin release by the adenohypophysis. Proc Natl Acad Sci U S A. 1995;92(1):170-4. [Link] [DOI:10.1073/pnas.92.1.170]
41. Dourado M, Cavalcanti F, Vilar L, Cantilino A. Relationship between prolactin, chronic kidney disease, and cardiovascular risk. Int J Endocrinol. 2020;2020. [Link] [DOI:10.1155/2020/9524839]
42. Wang L, Yang T, Ding Y, Zhong Y, Yu L, Peng M. Chemerin plays a protective role by regulating human umbilical vein endothelial cell-induced nitric oxide signaling in preeclampsia. Endocrine. 2015;48(1):299-308. [Link] [DOI:10.1007/s12020-014-0286-y]
43. Neves KB, Lobato NS, Lopes RA, Filgueira FP, Zanotto CZ, Oliveira AM, et al. Chemerin reduces vascular nitric oxide/cGMP signalling in rat aorta: a link to vascular dysfunction in obesity?. Clin Sci. 2014;127(2):111-22. [Link] [DOI:10.1042/CS20130286]

Add your comments about this article : Your username or Email:
CAPTCHA