Volume 15, Issue 1 (2023)                   Iran J War Public Health 2023, 15(1): 43-48 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)


Rights and permissions
1- Department of Veterinary Microbiology and Parasitology, College of Veterinary Medicine, University of Basrah, Iraq
* Corresponding Author Address: Department of Veterinary Microbiology and Parasitology, College of Veterinary Medicine, University of Basrah, Iraq. Postal Code: - (basil.abbas@uobasrah.edu.iq)
Abstract   (594 Views)
Aims: In recent years, the global incidence of infections caused by gram-negative bacteria resistant to antibiotics has increased. This study aimed to investigate the presence and frequency of coagulase-negative Staphylococci in contact between animals and people and determine the phenotypic antimicrobial resistance profiles of coagulase-negative Staphylococci isolates from these sources.
Materials & Methods: 80 samples were collected from humans in different areas of Basrah Province, including 40 samples from human hand swabs and 40 from nasal swabs. The samples were inoculated onto mannitol salt agar and blood agar and then incubated at 37ºC for 24 hrs. Antibiotic susceptibility testing was performed using the disc diffusion method. A molecular study was done using the PCR technique.
Findings: 37 samples (46.25%) were positive for staphylococcal infection. Five species, including S. sciuri, S. lentus, S. gallinarum, S. chromogen, and S. haemolyticus were identified, according to Vitek 2 kit. Staphylococci were resistant to several different antibiotics. Out of 20 amplification samples, only 12 positive samples were purified for the ermA gene region with a PCR product of 190 bp. The results also showed the presence of an ermC band with a size of 299 bp, which represents the correct expected band in 8 isolates out of all isolates.
Conclusion: Gram-positive organisms are increasingly identified as the source of acute clinical infection in animals and humans. Some isolates are resistant to several different antibiotics. The ermC gene, ermA gene, and both ermA and ermC genes are present in the genome of these bacteria.

1. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-55. [Link]
2. Davies J. Inactivation of antibiotics and the dissemination of resistance genes. Science. 1994;264(5157):375-82. [Link] [DOI:10.1126/science.8153624]
3. Noble W C, Virani Z, Cree R G. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett. 1992;72(2):195-8. [Link] [DOI:10.1111/j.1574-6968.1992.tb05089.x]
4. Grabow WOK, Middendorf IG, Prozesky OW. Survival in maturation ponds of coliform bacteria with transferable drug resistance. Water Res. 1973;7(11):1589-97. [Link] [DOI:10.1016/0043-1354(73)90130-9]
5. Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903-10. [Link] [DOI:10.2147/IDR.S234610]
6. Anacarso I, Condò C, Sabia C, Messi P, de Niederhausern S, Bondi M, et al. Antimicrobial resistance and other related virulence factors in Staphylococcus spp isolated from food, environmental and humans in Italy. Univ J Microbiol Res. 2013;1(1):1-9. [Link] [DOI:10.13189/ujmr.2013.010101]
7. Lozano C, Aspiroz C, Rezusta A, Gómez-Sanz E, Simon C, Gómez P, et al. Identification of novel vga(A)-carrying plasmids and a Tn5406-like transposon in meticillin-resistant Staphylococcus aureus and Staphylococcus epidermidis of human and animal origin. Int J Antimicrob Agents. 2012;40(4):306-12. [Link] [DOI:10.1016/j.ijantimicag.2012.06.009]
8. Malachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci. 2010;67(18):3057-71. [Link] [DOI:10.1007/s00018-010-0389-4]
9. Khan SA, Nawaz MS, Khan AA, Cerniglia CE. Transfer of erythromycin resistance from poultry to human clinical strains of phylococcus aureus. J Clin Microbiol. 2000;38(5):1832-8. [Link] [DOI:10.1128/JCM.38.5.1832-1838.2000]
10. Walther C, Perreten V. Methicillin-resistant Staphylococcus epidermidis in organic milk production. J Dairy Sci. 2007;90(12):5351. [Link] [DOI:10.3168/jds.2007-0547]
11. Mezban JM, Khudor MH, Abbas BA. Multiplex PCR detection of erythromycin resistance genes in coagulase negative Staphylococci isolated from cows in Basrah, Iraq. Bas J Vet Res. 2018;17(1):86-102. [Link] [DOI:10.33762/bvetr.2018.144911]
12. Khudor MH, Abbas BA, Idbeis HI. Detection of enterotoxin genes of Staphylococcus aureus isolates from raw milk. Bas J Vet Res. 2012;11(1):254. [Link] [DOI:10.33762/bvetr.2012.54852]
13. Abbas BA, Khudor, MH, Idbeis HI. Iinvestigation of the activityand pathogenecity of Staphylococcus aureus enterotoxin c by ligated ileal loopassay in rabbits. Bas J Vet Res. 2013;12(2):104-12. [Link] [DOI:10.33762/bvetr.2013.83629]
14. Khudaier BY, Abbas BA, Khudaier AM. Detection of methicillin resistant Staphylococcus aureus isolated from human and animals in Basrah Province/Iraq. MRVSA. 2013;2(3):12-21. [Link]
15. Abbas BA, Khudor MH, Hanoon BM. Isolation and identification of Staphylococcus aureus from bovine and the detection of its coagulase gene (Coa) using polymerase chain reaction (PCR). Sc Res Assays. 2014;9(20):864-8. [Link] [DOI:10.5897/SRE2014.6029]
16. Abbas BA, Khudor MH, Hanoon B. The relationship between biotype, serotype, antibiotic susceptibility and Coa gene polymorphism in Staphylococcus aureus isolated from bovine. Vet Med Assiut Univ Egypt. 2016;17:33. [Link]
17. Abbas BA, Khudaier BY, Khudair AM. Studies on mecA gene in methicillin resistant Staphylococcus aureus isolates. Jokull J 2017;58-65. [Link]
18. Lyon BR, Skurray RA. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev. 1987;51(1):88-134. [Link] [DOI:10.1128/mr.51.1.88-134.1987]
19. Muhammad G, Hoblet KH, Jackwood DJ, Nielsen SB, Smith KL. Interspecific conjugal transfer of antibiotic resistance among staphylococci isolated from the bovine mammary gland. Am J Vet Res. 1993;54(9):1432-40. [Link]
20. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493-6. [Link] [DOI:10.1093/ajcp/45.4_ts.493]
21. Duran N, Ozer B, Duran GG, Onlen Y, Demir C. Antibiotic resistance genes & susceptibility patterns in staphylococci. Indian J Med Res. 2012;135(3):389-96. [Link]
22. Fuchs M, Sanyal AJ. Sepsis and cholestasis. Clin Liver Dis. 2008;12(1):151-72. [Link] [DOI:10.1016/j.cld.2007.11.002]
23. Graf B, Thomas A, Edith Z, Göbel UB. Evaluation of the VITEK 2 system for rapid identification of yeasts and yeast-like organisms. J Clin Microbiol. 2000;38(5):1782-5. [Link] [DOI:10.1128/JCM.38.5.1782-1785.2000]
24. Ghostaslo R, Ghorashi Z, Nahaei MR. Klebsiella pneumoniae in neonatal sepsis: a 3-year-study in the pediatric hospital of Tabriz, Iran. Jpn J Infect Dis. 2007;60(2-3):126-8. [Link]
25. Elliot T, Hastings M, Desselberger U. Lecture notes on medical microbiology. 3rd Edition. London: Blackwell Science: 1997. [Link]
26. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother. 1995;39(3):577-85. [Link] [DOI:10.1128/AAC.39.3.577]
27. Lim JA, Kwon AR, Kim SK, Chong Y, Lee K, Choi EC. Prevalence of resistance to macrolide, lincosamide and streptogramin antibiotics in Gram-positive cocci isolated in a Korean hospital. J Antimicrob Chemother. 2002;49(3):489-95. [Link] [DOI:10.1093/jac/49.3.489]
28. Martineau F, Picard FJ, Lansac N, Menard C, Roy PH, Ouellette M, et al. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic suseptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 2000;44(2):231-8. [Link] [DOI:10.1128/AAC.44.2.231-238.2000]
29. Thakker-Varia S, Jenssen WD, Moon-McDermott L, Weinstein MP, Dubin DT. Molecular epidemiology of macrolides-lincosamides-streptogramin B resistance in Staphylococcus aureus and coagulase-negative staphylococci. Antimicrob Agents Chemother. 1987;31(5):735-43. [Link] [DOI:10.1128/AAC.31.5.735]
30. Taponen S, Simojoki H, Haveri M, Larsen HD, Pyörälä S. Clinical characteristics and persistence of bovine mastitis caused by different species of coagulase-negative staphylococci identified with API or AFLP. Vet Microbiol. 2006;115(1-3):199-207. [Link] [DOI:10.1016/j.vetmic.2006.02.001]
31. Akineden, Annemüller C, Hassan AA, Lmmler C, Wolter W, Zschck M. Toxin genes and other characteristics of Staphylococcus aureus isolates from milk of cows with mastitis. Clin Diagn Lab Immunol. 2001;8(5):959-64. [Link] [DOI:10.1128/CDLI.8.5.959-964.2001]
32. El-Sayed A, Alber J, Lmmler C, Bonner B, Huhn A, Kaleta EF, et al. PCR-based detection of genes encoding virulence determinants in Staphylococcus aureus from birds. J Vet Med B Infect Dis Vet Public Health. 2005;52(1):38-44. [Link] [DOI:10.1111/j.1439-0450.2004.00814.x]
33. Stephan R, Annemüller C, Hassan AA, Lmmler C. Characterization of enterotoxigenic Staphylococcus aureus strains isolated from bovine mastitis in north-east Switzerland. Vet Microbiol. 2001;78(4):373-82. [Link] [DOI:10.1016/S0378-1135(00)00341-2]
34. Fitzgerald JR, Hartigan PJ, Meaney WJ, Smyth CJ. Molecular population and virulence factor analysis of Staphylococcus aureus from bovine intramammary infection. J Appl Microbiol. 2000;88(6):1028-37. [Link] [DOI:10.1046/j.1365-2672.2000.01071.x]