Iranian Journal of War and Public Health

eISSN (English): 2980-969X
eISSN (Persian): 2008-2630
pISSN (Persian): 2008-2622
JMERC
0.3
Volume 14, Issue 2 (2022)                   Iran J War Public Health 2022, 14(2): 231-242 | Back to browse issues page

Print XML PDF HTML Full-Text (HTML)

History

How to cite this article
Fadhil Kadhim E. Histological Evaluation of Vitronectin Protein/Angiopoietin-Like 4 Protein on Bone Healing in Rats. Iran J War Public Health 2022; 14 (2) :231-242
URL: http://ijwph.ir/article-1-1149-en.html
Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rights and permissions
College of Dentistry University Baghdad, Baghdad, Iraq
* Corresponding Author Address: 0000-0003-3698-0349 (drenas2019@gmail.com)
Abstract   (753 Views)
Aims: Bone defect repair is still a serious clinical orthopedic issue. To preserve skeletal integrity, bone is a highly vascularized tissue that relies on a close spatial and temporal interaction between blood vessels and bone cells. The aim of the study was to see if the local application of vitronectin protein /angiopoietin-like 4 protein as an autoinducer could help with bone repair.
Material & Methods: In this study, 48 albino male rats weighing 300-400 grams and aged 6-8 months were employed under temperature, drinking, and food consumption control conditions. The animals were subjected to a surgical procedure on the medial side of the tibiae bone. In the control group, the bone defect was treated with a local application of an absorbable hemostatic sponge, whereas in the experimental group, which was divided into three subgroups, a group I the bone defect was treated with a local application of 1mg vitronectin protein, group II with a local application of 1mg angiopoietin-like 4 protein, and group III with a local application of a combination of the two (0.5mg vitronectin protein and 0.5 mg of angiopoietin-like 4). The absorbable hemostatic sponge was used to fix all of the experimental groups. 14 and 28 days following surgery, the rats were slaughtered (six rats for each period).
Findings: In comparison to other groups, bone defects treated with local application of both vitronectin and angiopoietin protein exhibit new bone formation with a high bone cell count and high bone architectures in terms of trabecular number, bone marrow area, and bone marrow space.
Conclusion: The findings of this investigation revealed that a combination of vitronectin and angiopoietin-like proteins exhibited potential efficacy in boosting bone defect healing.
 
Keywords:

References
1. Fadhil E, Alhijazi A. Histological and immunohistochemical evaluation of the effect of local exogenous application of VEGF on bone healing (experimental study in rat). J Baghdad Coll Dentistry. 2014;26. [Link] [DOI:10.12816/0015148]
2. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem. 2010;285(33):25103-8. [Link] [DOI:10.1074/jbc.R109.041087]
3. Boron WF, Boulpaep EL. Medical physiology. 2nd Edition. Saunders; 2012. p. 1097. [Link]
4. Preissner KT, Seiffert D. Role of vitronectin and its receptors in haemostasis and vascular remodeling. Thrombos Res. 1998;89(1):1-21. [Link] [DOI:10.1016/S0049-3848(97)00298-3]
5. Felding-Habermann B, Cheresh DA. Vitronectin and its receptors. Curr Opin Cell Biol. 1993;5(5):864-8. [Link] [DOI:10.1016/0955-0674(93)90036-P]
6. Zhou A, Huntington JA, Pannu NS, Carrell RW, Read RJ. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Biol. 2003;10(7):541-4. [Link] [DOI:10.1038/nsb943]
7. Horn NA, Hurst GB, Mayasundari A, Whittemore NA, Serpersu EH, Peterson CB. Assignment of the four disulfides in the N-terminal somatomedin B domain of native vitronectin isolated from human plasma. J Biol Chem. 2004;279(34):35867-78. [Link] [DOI:10.1074/jbc.M405716200]
8. Xu D, Baburaj K, Peterson CB, Xu Y. Model for the three-dimensional structure of vitronectin: predictions for the multi-domain protein from threading and docking. Proteins. 2001;44(3):312-20. [Link] [DOI:10.1002/prot.1096]
9. Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A, et al. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol. 2000;20(14):5343-9. [Link] [DOI:10.1128/MCB.20.14.5343-5349.2000]
10. Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, et al. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133(1):66-77. [Link] [DOI:10.1016/j.cell.2008.01.046]
11. Zhu P, Goh YY, Chin HF, Kersten S, Tan NS. Angiopoietin-like 4: a decade of research. Biosci Rep. 2012;32(3):211-9. [Link] [DOI:10.1042/BSR20110102]
12. Desai U, Lee EC, Chung K, Gao C, Gay J, Key B, et al. Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proc Nat Acad Sci U S A. 2007;104(28):11766-71. [Link] [DOI:10.1073/pnas.0705041104]
13. Adhikary T, Brandt DT, Kaddatz K, Stockert J, Naruhn S, Meissner W, et al. Inverse PPARβ/δ agonists suppress oncogenic signaling to the ANGPTL4 gene and inhibit cancer cell invasion. Oncogene. 32(44):5241-52. [Link] [DOI:10.1038/onc.2012.549]
14. Brindle NPJ, Saharinen P, Alitalo K. signalling and functions of angiopoietin-1 in vascular protection. Circ Res. 2006;98(8):1014-23. [Link] [DOI:10.1161/01.RES.0000218275.54089.12]
15. Fong CD, Cerny R, Hammarstrom L, Slaby I. Sequential expression of an amelin gene in mesenchymal and epithelial cells during odontogenesis in rats. Eur J Oral Sci. 1998;106 Suppl 1:324-30. [Link] [DOI:10.1111/j.1600-0722.1998.tb02193.x]
16. American Academy of Professional Coders. Official CPC certification study guide. New York: Delmar Cengage Learning; 2012. [Link]
17. Sandberg OH, Aspenberg P. Inter-trabecular bone formation: a specific mechanism for healing of cancellous bone. Acta Orthop. 2016;87(5):459-65. [Link] [DOI:10.1080/17453674.2016.1205172]
18. Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, et al. Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing. J Biol Chem. 2010;285(43):32999-3009. [Link] [DOI:10.1074/jbc.M110.108175]
19. Wilson SS, Wong A, Toupadakis CA, Yellowley CE. Expression of angiopoietin-like protein 4 at the fracture site: Regulation by hypoxia and osteoblastic differentiation. J Orthop Res. 2015;33(9):1364-73. [Link] [DOI:10.1002/jor.22898]
20. Schaffler MB, Kennedy OD. Osteocyte signaling in bone. Curr Osteoporos Rep. 2012;10(2):118-25. [Link] [DOI:10.1007/s11914-012-0105-4]
21. Bastos MF, Brilhante FV, Bezerra JP, Silva CA, Duarte PM. Trabecular bone area and bone healing in spontaneously hypertensive rats: a histometric study. Braz Oral Res. 2010;24(2):170-6. [Link] [DOI:10.1590/S1806-83242010000200008]
22. Albertazzi P. Purified phytoestrogens in postmenopausal bone health: Is there a role for genistein?. Climacteric. 2002;5(2):190-6. [Link] [DOI:10.1080/cmt.5.2.190.196]
23. Monfoulet L, Rabier B, Chassande O, Fricain JC. Drilled hole defects in mouse femur as models of intramembranous cortical and cancellous bone regeneration. Calcif Tissue. 2010;86(1):72-81. [Link] [DOI:10.1007/s00223-009-9314-y]
24. Min SK, Kang HK, Jung SY, Jang DH, Min BM. A vitronectin-derived peptide reverses ovariectomy-induced bone loss via regulation of osteoblast and osteoclast differentiation. Cell Death Differ. 2018;25(2):268-81. [Link] [DOI:10.1038/cdd.2017.153]
25. Knowles HJ. Multiple roles of angiopoietin-like 4 in osteolytic disease. Front Endocrinol. 2017:8:80. [Link] [DOI:10.3389/fendo.2017.00080]
26. Guimarãe KB, do Egito Vasconcelos BC, de Assis Limeira Júnior F, de Sousa FB, de Souza Andrade ES, de Holanda Vasconcello RJ. Histomorphometric evaluation of calcium phosphate bone grafts on bone repair. Braz J Ortorhinolarynol. 2011;77(4):447-54. [Portuguese] [Link] [DOI:10.1590/S1808-86942011000400007]
27. Majeed SS, Ghani BA. Effect of topical application of flavanoids extract of Hibiscus sabdariffa on experimentally induced bone defect. J Baghdad Coll Dentistry. 2018;30(1):33-8. [Link] [DOI:10.12816/0046309]
28. Lu X, Li W, Fukumoto S, Yamada Y, Evans CA, Diekwisch T, et al. The ameloblastin extracellular matrix molecule enhances bone fracture resistance and promotes rapid bone fracture healing. Matrix Biol. 2016;52-54:113-26. [Link] [DOI:10.1016/j.matbio.2016.02.007]
29. Karpouzos A, Diamantis E, Farmaki P, Savvanis S, Troupis T. Nutritional aspects of bone health and fracture healing. J Osteoporos. 2017;2017:4218472. [Link] [DOI:10.1155/2017/4218472]
30. Prodinger PM, Bürklein D, Foehr P, Kreutzer K, Pilge H, Schmitt A, et al. Improving results in rat fracture models: enhancing the efficacy of biomechanical testing by a modification of the experimental setup. BMC Musculoskelet Disord. 2018;19(1):243. [Link] [DOI:10.1186/s12891-018-2155-y]
31. Li Q, Geng Y, Lu L, Yang T, Zhang M, Zhou Y. Platelet-rich fibrin-induced bone marrow mesenchymal stem cell differentiation into osteoblast-like cells and neural cells. Neural Rege Res. 2011;6(31):2419-23. [Link]
32. Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S. Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. Int Orthop. 2013;37(12):2491-8. [Link] [DOI:10.1007/s00264-013-2059-2]
33. Otto WR, Rao J. Tomorrow's skeleton staff: mesenchymal stem cells and the repair of bone and cartilage. Cell Prolif. 2004;37(1):97-110. [Link] [DOI:10.1111/j.1365-2184.2004.00303.x]
34. Ode A, Kopf J, Kurtz A, Schmidt-Bleek K, Schrade P, Kolar P, et al. CD73 and CD29 concurrently mediate the mechanically induced decrease of migratory capacity of mesenchymal stromal cells. Eur Cell Mater. 2011;22:26-42. [Link] [DOI:10.22203/eCM.v022a03]
35. Tsai MT, Lin DJ, Huang S, Lin HT, Chang WH. Osteogenic differentiation is synergistically influenced by osteoinductive treatment and direct cell-cell contact between murine osteoblasts and mesenchymal stem cells. Int Orthop. 2012;36:199-205. [Link] [DOI:10.1007/s00264-011-1259-x]
36. Zhaoguo Liu, Song Zhou, Ya Zhang, Ming Zhao. Rat bone marrow mesenchymal stem cells(BMSCs) inhibit liver fibrosis by activating GSK3β and inhibiting the Wnt3a/β-catenin pathway. Infecti Agent Cancer. 2022;17(1):17. [Link] [DOI:10.1186/s13027-022-00432-4]

Add your comments about this article : Your username or Email:
CAPTCHA