:: Volume 14, Issue 1 (2022) ::
Iran J War Public Health 2022, 14(1): 65-74 Back to browse issues page
Tactile and Force Feedback Gloves for Virtual Reality and Telecontrol of Anthropomorphic Manipulators; an Analytic Review
I. Krechetov1, A.A. Skvortsov *2, I.A. Poselsky1
1- Office of Scientific Research and Development, Moscow Polytechnic University, Moscow, Russian Federation
2- Department of Dynamics, Strength and Resistance of Materials, Moscow Polytechnic University, Moscow, Russian Federation , a.skvortsov@politechnika.pro
Abstract:   (480 Views)
Introduction: Devices that allow using the functionality of natural hand movements are of the greatest interest. The purpose of this study was to select areas of research at the intersection of several fields of science – biomechanics and cybernetics to develop scientific and technical approaches to track the movements of the operator's fingers and form feedback tactile and force communication received from the control object to achieve a new level of accuracy in work with virtual and with real objects by converting virtual contact action into physical. Methods of force feedback were implemented according which they can be divided into two groups: active and passive feedback. The main technologies used to implement various functionalities of the virtual reality glove were identified: measuring hand positions and feedback generation. The main advantages of the planned development were also identified: the ability to digitize up to 16 finger joints, tactile and force feedback, and moderate cost, a benchmark for the mass market.
Conclusion: The development of the design of the glove will be implemented using a kinematic scheme based on the kinematics of the human hand, considering the requirements of aesthetics and ergonomics of the solution. As a sensor system, it is planned to use digital Hall sensors with a capacity of up to 14 bits, high speed and, at the same time, small dimensions, allowing them to be installed directly inside the swivel joints.
Keywords: Exoskeleton Device [MeSH], Cybernetics [MeSH], Biomechanical Phenomena [MeSH], Ergonomics [MeSH],
Full-Text [PDF 1120 kb]   (390 Downloads) |   |   Full-Text (HTML)  (8 Views)  
Article Type: Analytic Review | Subject: Assistive Medical Device for Veterans or Handicapped
Received: 2022/01/1 | Accepted: 2022/02/23 | Published: 2022/01/20
* Corresponding Author Address: 107023, 38 Bolshaya Semyonovskaya Str., Moscow, Russian Federation
1. Kim M, Jeon C, Kim J. A study on immersion and presence of a portable hand haptic system for immersive virtual reality. Sensors. 2017;17:1141. [] [DOI:10.3390/s17051141] [PMID] [PMCID]
2. Placidi G. A smart virtual glove for the hand telerehabilitation. Comput Biol Med. 2007;37(8):1100-7. [] [DOI:10.1016/j.compbiomed.2006.09.011] [PMID]
3. Placidi G, Cinque L, Polsinelli M, Spezialetti M. Measurements by a LEAP-based virtual glove for the hand rehabilitation. Sensors. 2018;18(3):834. [] [DOI:10.3390/s18030834] [PMID] [PMCID]
4. Besnea F, Cismaru SI, Trasculescu AC, Resceanu IC, Ionescu M, Hamdan H, et al. Integration of a haptic glove in a virtual reality-based environment for medical training and procedures. Acta Tech Napocensis Ser Appl Math Mech Eng. 2021;64(1-S2):281-90. []
5. Draganov IR, Boumbarov OL. Investigating Oculus Rift virtual reality display applicability to medical assistive system for motor disabled patients. 2015 IEEE 8th Int Conf Intell Data Acquis Adv Comput Syst Tech Appl. 2015;2:751-4. [] [DOI:10.1109/IDAACS.2015.7341403]
6. Yates M, Kelemen A, Sik Lanyi C. Virtual reality gaming in the rehabilitation of the upper extremities post-stroke. Brain Inj. 2016;30(7):855-63. [] [DOI:10.3109/02699052.2016.1144146] [PMID]
7. Zyda M. From visual simulation to virtual reality to games. Computer. 2005;38(9):25-32. [] [DOI:10.1109/MC.2005.297]
8. Kuei-Shu H. Application of a virtual reality entertainment system with human-machine haptic sensor device. J Appl Sci. 2011;11(12):2145-53. [] [DOI:10.3923/jas.2011.2145.2153]
9. Cheok AD, Haller M, Fernando ONN, Wijesena JP. Mixed reality entertainment and art. Int J Virtual Reality. 2009;8(2):83-90. [] [DOI:10.20870/IJVR.2009.8.2.2729]
10. Von Itzstein GS, Billinghurst M, Smith RT, Thomas BH. Augmented reality entertainment: Taking gaming out of the box. In: Lee N, editor. Encyclopedia of computer graphics and games. Cham: Springer; 2019. p. 1-9. [DOI:10.1007/978-3-319-08234-9_81-1]
11. Gallo L. A glove-based interface for 3D medical image visualization. In: Damiani E, Howlett RJ, Jain LC, Gallo L, De Pietro G, editors. Intelligent interactive multimedia systems and services. Berlin: Springer; 2010. p. 221-30. [DOI:10.1007/978-3-642-14619-0_21]
12. Gallotti P, Raposo A, Soares L. V-Glove: A 3D virtual touch interface. 2011 XIII Symposium on Virtual Reality, Uberlandia, Brazil, 23-26 May 2011. Piscataway: IEEE; 2011. [] [DOI:10.1109/SVR.2011.21]
13. Wong PYJ, Lau RWH, Ma L. Virtual 3D sculpturing. J Visualiz Comput Anim. 2000;11(3):155-66. [DOI:10.1002/1099-1778(200007)11:33.0.CO;2-7]
14. Perrenot C, Perez M, Tran N, Jehl JP, Felblinger J, Bresler L, et al. The virtual reality simulator dV-Trainer® is a valid assessment tool for robotic surgical skills. Surg Endosc. 2012;26(9):2587-93. [] [DOI:10.1007/s00464-012-2237-0] [PMID]
15. Ćwil M, Bartnik W. Physically extended virtual reality (PEVR) as a new concept in railway driver training. In: Chen J, Fragomeni G, editors. Virtual, augmented and mixed reality. Applications and Case Studies. Cham: Springer; 2019. pp. 230-42. [] [DOI:10.1007/978-3-030-21565-1_15]
16. Nainggolan F, Siregar B, Fahmi F. User experience in excavator simulator using leap motion controller in virtual reality environment. J Phys Conf Ser. 2020;1566(1):012093. [] [DOI:10.1088/1742-6596/1566/1/012093]
17. Mizera C, Delrieu T, Weistroffer V, Andriot C, Decatoire A, Gazeau JP. Evaluation of hand-tracking systems in teleoperation and virtual dexterous manipulation. IEEE Sens J. 2019;20(3):1642-55. [] [DOI:10.1109/JSEN.2019.2947612]
18. Lv X, Zhang M, Cui F, Zhang X. Teleoperation of robot based on virtual reality. 16th International Conference on Artificial Reality and Telexistence - Workshops (ICAT'06). Piscataway: IEEE; 2006. p. 400-3. [DOI:10.1109/ICAT.2006.124]
19. Hollerbach JM, Jacobsen SC. Haptic interfaces for teleoperation and virtual environments. Proceedings of first workshop on simulation and interaction in virtual environments. Piscataway: Institute of Electrical and Electronics Engineers Inc.; 1995. pp. 13-15. []
20. Leite L. Virtual marionette. Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces. Piscataway: Institute of Electrical and Electronics Engineers Inc.; 2012. p. 363-6. [DOI:10.1145/2166966.2167049] [PMID] [PMCID]
21. Geigel J, Schweppe M. Motion capture for realtime control of virtual actors in live, distributed, theatrical performances. In: 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG). Piscataway: Institute of Electrical and Electronics Engineers Inc.; 2011. p. 774-9. [DOI:10.1109/FG.2011.5771347]
22. Kartiko I, Kavakli M, Cheng K. Learning science in a virtual reality application: The impacts of animated-virtual actors' visual complexity. Comput Educ. 2010;55(2):881-91. [] [DOI:10.1016/j.compedu.2010.03.019]
23. Dickens L, Edensor T. Entering the Fifth Dimension: modular modernities, psychedelic sensibilities, and the architectures of lived experience. Transact Inst Br Geogr. 2021;46(3):659-74. [] [DOI:10.1111/tran.12440]
24. Bickmann R, Tran C, Ruesch N, Wolf K. Haptic illusion glove: a glove for illusionary touch feedback when grasping virtual objects. Proceedings of Mensch und Computer, September 2019: pp. 565-9. [] [DOI:10.1145/3340764.3344459]
25. synertial.com [Internet]. Unknown city: Synertial; 2021 [cited 2021 Jul 28]. Available from: http://www.synertial.com/cobra-gloves. []
26. dextarobotics.com [Internet]. Unknown city: DextaRobotics; 2021 [cited 2021 Jul 28]. Available from: http://www.dextarobotics.com. []
27. Wang H, Tong X, Lu F. Deep learning based target detection algorithm for motion capture applications. J Phys Conf Ser. 2020;1682:012032. [] [DOI:10.1088/1742-6596/1682/1/012032]
28. Claverie L, Ille A, Moretto P. Discrete sensors distribution for accurate plantar pressure analyses. Med Eng Phy. 2016;38(12):1489-94. [] [DOI:10.1016/j.medengphy.2016.09.021] [PMID]
29. Aretinsky VB, Telegina EV, State VLI. Restoration of motor function of the hand in patients with stroke using the "hand tutor" system. Уральский медицинский журнал. 2014(9):46-9. [Russian] []
30. noitom.com [Internet]. Unknown city: Noitom Ltd; 2021 [cited 2021 Jul 28]. Available from: http://www.noitom.com. []
31. Pons JL, Rocon E, Ceres R, Reynaerts D, Saro B, Levin S, Van Moorleghem W. The MANUS-HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects. Autonomous Robots. 2004;16(2):143-63. [] [DOI:10.1023/B:AURO.0000016862.38337.f1]
32. Caeiro-Rodríguez M, Otero-González I, Mikic-Fonte FA, Llamas-Nistal M. A systematic review of commercial smart gloves: Current status and applications. Sensors. 2021;21(8):2667. [] [DOI:10.3390/s21082667] [PMID] [PMCID]
33. nansense.com [Internet]. Unknown city: NANSENSE Inc.; 2021 [cited 2021 Aug 16]. Available from: http://www.nansense.com. []
34. Sers R, Forrester S, Moss E, Ward S, Ma J, Zecca M. Validity of the Perception Neuron inertial motion capture system for upper body motion analysis. Measurement. 2020;149:107024. [] [DOI:10.1016/j.measurement.2019.107024]
35. Kim H, Lee A, Shin YI, Chang WH, Koo KH, Seong H, Kim YH. Effects of digital smart glove system on motor recovery of upper extremity in subacute stroke patients. Ann Phys Rehabil Med. 2018;61:e28. [] [DOI:10.1016/j.rehab.2018.05.061]
36. Moeslund TB, Hilton A, Krüger V. A survey of advances in vision-based human motion capture and analysis. Computer vision and image understanding. 2006;104(2-3):90-126. [] [DOI:10.1016/j.cviu.2006.08.002]
37. senseglove.com [Internet]. Unknown city: Sense Glove; 2021 [cited 2021 Aug 16]. Available from: http://www.senseglove.com. []
38. Vidal-Verdú F, Delgado-Restituto M, Navas R, Rodrı́guez-Vázquez A. A design approach for analog neuro/fuzzy systems in CMOS digital technologies. Comput Electric Eng. 1999;25(5):309-37. [] [DOI:10.1016/S0045-7906(99)00008-7]
39. Darrah M, Humbert R, Finstein J, Simon M, Hopkins J. Are virtual labs as effective as hands-on labs for undergraduate physics? A comparative study at two major universities. J Sci Educ Technol 2014;23(6):803-14. [] [DOI:10.1007/s10956-014-9513-9]
40. Burdea GC. Haptic feedback for virtual reality. Virtual reality and prototyping workshop. 1999;2:17-29. []
41. tautracker.com [Internet]. Unknown city: Tau Tracker; 2021 [cited 2021 Sep 2]. Available from: http://www.https://www.tautracker.com/devices_ru.
42. Cassar DJ, Saliba MA. A force feedback glove based on magnetorheological fluid: Preliminary design issues. Proc Mediterr Electrotech Conf. 2010;5476012:618-23. [] [DOI:10.1109/MELCON.2010.5476012]
43. Winter SH, Bouzit M. Use of magnetorheological fluid in a force feedback glove. IEEE Trans Neural Syst Rehabil Eng. 2007;15(1):2-8. [] [DOI:10.1109/TNSRE.2007.891401] [PMID]
44. Blake J, Gurocak HB. Haptic glove with MR brakes for virtual reality. IEEE/ASME Trans Mechatron. 2009;14(5):606-15. [] [DOI:10.1109/TMECH.2008.2010934]
45. Guo Y, Yang X, Wang H, Xu W, Wang D. Five-fingered passive force feedback glove using a variable ratio lever mechanism. Actuators. 2021;10(5):96. [] [DOI:10.3390/act10050096]
46. Gu X, Zhang Y, Sun W, Zhou D, Kristensson PO. Dexmo: An inexpensive and lightweight mechanical exoskeleton for motion capture and force feedback in VR. In: Conference on Human Factors in Computing Systems - Proceedings. New York: Association for Computing Machinery; 2016. p. 1991-5. [] [DOI:10.1145/2858036.2858487]
47. Wang D, Wang Y, Pang J, Wang Z, Zi B. Development and control of an MR brake-based passive force feedback data glove. IEEE Access. 2019;7:172477-88. [] [DOI:10.1109/ACCESS.2019.2956954]
48. Zhang R, Lochmatter P, Kunz A, Kovacs G. Spring roll dielectric elastomer actuators for a portable force feedback glove. Proc. SPIE 6168, Smart Structures and Materials 2006: Electroactive Polymer Actuators and Devices (EAPAD), 61681T (22 March 2006). [] [DOI:10.1117/12.658524]
49. Koyama T, Yamano I, Takemura K, Maeno T. Multi-fingered exoskeleton haptic device using passive force feedback for dexterous teleoperation. IEEE Int Conf Intelligent Rob Syst. 2002;3:2905-10. []

XML     Print

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 14, Issue 1 (2022) Back to browse issues page